

SYSTEMATIC CHARACTERIZATION OF THE SIC/SIO $_2$ TRANSITION LAYER IN NO-ANNEALED MOSFETS

Joshua Taillon,¹ Joon Hyuk Yang,¹ Claude Ahyi,² John Rozen,³ John Williams,² Leonard Feldman,³ Tsvetanka Zheleva,⁴ Aivars Lelis,⁴ and Lourdes Salamanca-Riba¹

Thursday, August 16, 2012

¹ Materials Science and Engineering, University of Maryland College Park

² Physics, Auburn University

³ Physics and Astronomy, Vanderbilt University

⁴ Army Research Laboratory

Outline

- Introduction, Motivation, Background, Goals
- Experimental Methods
 - EELS, Spectrum Imaging, w_{TL} determination
- Transition layer width results
 - Composition ratios
 - Interdiffusion
 - HAADF-STEM
 - Chemical shift
- Correlation with electronic measurements
- Conclusions, Remaining questions, etc.

Motivation and Background

- SiC: Very promising for high temperature, high power, and high frequency devices
 - 4H polytype (bulk):¹ $E_g = 3.23 \text{ eV}, \mu_e \approx 850 \frac{\text{cm}^2}{\text{V}\cdot\text{s}}, \epsilon = 10, \kappa = 3.7 \frac{\text{W}}{\text{cm}\cdot\text{°C}}$
 - MOSFET devices limited by poor channel carrier mobility and reliability
 - Electrically active defects at the SiC/SiO₂ interface inhibit devices during channel inversion
- Possible nature of these defects?

Excess carbon at the interface (maybe?)	K. Chang, <i>et al</i> . J. Electron. Mater. 32, 464 (2003). X. Shen, <i>et al</i> . J. Appl. Phys. 108, 123705 (2010). Hatakeyama, <i>et al.</i> Mater. Sci. Forum 679, 330 (2010).
3-fold Si and C coordination and C _i	M. Di Ventra, <i>et al.</i> Phys. Rev. Lett. 83 , 1624 (1999). S. Pantelides, <i>et al.</i> Mater. Sci. Forum 527 , 935 (2006).
V_{Si} and V_{o} at interface	C. Cochrane, <i>et al</i> . Appl. Phys. Lett. 100 , 23509 (2012). J. Rozen, <i>et al</i> . J. Appl. Phys. 105 , 124506 (2009).

¹Semiconductor database: http://www.ioffe.ru/SVA/NSM/Semicond/SiC/index.html

Previous Work

- Transition region around SiC/SiO₂ interface
 - EELS evidence of enhanced C concentration in SiC at interface
 - T. Zheleva, et al. Appl. Phys. Lett. 93, 022108 (2008).
 - Transition layer width (w_{TL}) lowered by NO post-anneal; measured with HAADF-STEM intensity profiles
 - Inverse linear correlation between $w_{\rm TL}$ and mobility
 - T. Biggerstaff, et al. Appl. Phys. Lett. **95**, 032108 (2009). \rightarrow
- Our previous results (2010)
 - Not annealed, 240 min NO anneal, 20 hr N₂ plasma anneal, 4 and 6 hr O₂ plasma oxidation
 - Annealing in all cases yielded sharper interfaces than non-annealed
 - N₂ plasma most effective, but no systematic results

Goals

- Physically and chemically characterize transition layer as a function of NO post-annealing time
 - Systematic set of SiC MOSFETS that received
 0, 15, 30, 60, 120, and 240 minute post-oxidation anneals at 1175°C
 - Using HRTEM, HAADF-STEM, and EELS
 - Correlate with measured device properties
 - Investigate conflicting claims of excess C at interface
- Develop reliable, objective, and reproducible methods by which to determine w_{TL}
 - For comparison to previous works and future sample sets

TEM Specimen Preparation

- Cross-sectional TEM specimen prepared with FIB
 - Mo gate metallization removed from devices with H₂O₂ etch
 - Two protective Pt layers (e⁻ beam and ion beam deposited) prevent Ga⁺ ion implantation and oxide layer damage
 - Previous work used C protective layer, complicating analysis

THE DEPARTMENT of MATERIALS SCIENCE AND ENGINEERING

6

TEM Specimen Preparation

- Typical specimen dimensions
 - 6µm × 3µm × ≈ 8onm
 - Flat "flag" specimen attached to grid with Pt

FIB image before thinning

SEM image after thinning

Low-mag TEM image

7

8/16/2012 - J. Taillon

HRTEM of Transition Layer

9

Transition Layer Thickness Measures

- EELS composition ratios ($^{C}/_{Si}$ and $^{O}/_{Si}$) \rightarrow
 - Zheleva, et al. Appl. Phys. Lett. 93, 022108 (2008).
 - Eliminates many sources of systematic error¹
- Relative "interdiffusion" of C and O (EELS)
 - Gives idea of transition layer on each side of interface
 - C into SiO₂ and O into SiC
- HAADF-STEM image intensity profiles
 - HAADF reveals Z-contrast from variations in atomic composition
- Chemical shift of Si-L_{2,3} EELS edge
 - Well-documented shift in edge onset energy (SiC: 100 eV; SiO₂: 104 eV)
 - G. Auchterlonie, *et al.* Ultramicroscopy, **31**, 217 (1989).
 - Reveals information about local Si bonding

¹ R. Brydson and R.M.S. (UK), *Electron Energy Loss Spectroscopy*, Microscopy Handbooks (Bios, 2001).

EELS Experimental Methods

- Gatan Tridiem post-column imaging filter
 - Simultaneous HAADF-STEM imaging and EELS collection
- Spectrum imaging
 - Raster beam across sample, collecting a full EELS spectrum at each pixel
 - Spectrum image (SI) represents a map of spectra
 - Allows for short collection time, limited beam damage
 - Sum parallel to interface to improve $^{\rm S}/_{\rm N}$ ratio
- Collection parameters:
 - Linear or areal SI across interface
 - Dwell time < 0.01 s
 - Spot size (~ spatial resolution) = 0.5 nm
 - Energy dispersion = 0.3 eV/channel

Spectrum Imaging

Spectrum Imaging

Background-subtracted spectrum (60 minute anneal)

Elemental Composition Ratio

w_{TL} from Composition Ratios

Results (composition ratios)

- w_{τ_1} decreases as anneal time increases
 - EELS signal from 240 min anneal sample very noisy (C implantation)
- NO anneal results in significant improvement!
 - Removal of defects
 - Smoothing of interface¹
- $\frac{0}{s_i}$ slightly larger than $\frac{c}{s_i}$
 - Significant difference?

¹ P. Tanner, *et al.* Journal of Electronic Materials 28, 109–111 (1999).

"Interdiffusion" lengths

- Useful to see tails of C concentration in SiO₂ and O in SiC
 - Normalized bulk concentrations and measured tails with derivative

Results ("Interdiffusion")

- Again, NO anneal shows significant improvement
- O tail in SiC always larger than C tail in SiO₂
- Why?
 - C efficiently removed during oxidation¹
 - O solubility in SiC very low²

² M. Di Ventra and S. Pantelides, J. Electro. Mater. **29**, 353 (2000).

¹ M. Di Ventra and S. Pantelides, Phys. Rev. Lett. **83**, 1624 (1999).

HAADF-STEM Image Intensity¹

- Z-contrast from enhanced scattering cross-sections of heavier elements
 - w_{τ_1} defined as width between peak and inflection point

¹After: T. Biggerstaff, et al. Appl. Phys. Lett. **95**, 032108 (2009).

HAADF-STEM Results

- *w*_{TL} results on same order as other methods
- Poorer overall trend in w_{TL}
 - HAADF images varied substantially between samples
- No excess C, but bright intensity line
 - Thickness variations?

THE DEPARTMENT of MATERIALS SCIENCE AND ENGINEERING

120 min

$Si-L_{2,3}$ Chemical Shift

- EELS fine structure (ELNES) reflects local unoccupied density of states
 - Edge onset → minimum energy needed to excite core shell e⁻
 - Semiconductor \rightarrow insulator
 - Band gap widens, core levels depressed relative to E_F¹
 - Charge transfer from Si \rightarrow C/O
 - Onset shifts to higher energy

¹ D. Muller, Ultramicroscopy **78**, 163 (1999).

$Si-L_{2,3}$ Chemical Shift

- Wrote script to find inflection point of edge onset¹
 - Sum spectra parallel to interface
 - Take second derivative
 - Find zero and output position as function of distance
- Gradual and monotonic shift
 - Bonding changes
 - Possible strain
 - Implies a mix of Si-C and Si-O
 - Modeling needed

¹ 1 D. Muller, P. Batson, and J. Silcox, Physical Review B 58, 11970 (1998).

Chemical Shift Results

- Significant NO anneal improvement
 - Best method to track transition layer
 - (Relatively) insensitive to spectral noise
 - 240 min now fits trend
 - Clear exponential decay
- Characterizes different phenomenon
 - Bonding vs. composition

All Results

Electronic Measurements

Data taken by J. Rozen

- J. Rozen, et al. IEEE Trans. Electron. Dev. 58, 3808 (2011).
- J. Rozen, *et al.* J. Appl. Phys. **105**, 124506 (2009).
- *w*_{TL} correlates:
 - Linearly with N density
 - Inverse-linearly with D_{it} and μ_{FE}
- Effect of NO?
 - Active removal of C (and O) at interface
 - Removes defects associated with these species

Conclusions

- w_{TL} decreases nonlinearly with increasing NO anneal time
 - All w_{TL} determination methods agree!
 - Chemical shift of Si-L_{2,3} edge onset was most reliable
 - Inverse linear correlation of w_{TL} with μ and N-density
 - Linear correlation of w_{TL} with D_{it}
- No excess C on either side of interface
- No layer of N detected at interface but should be able to see it
- Monotonic chemical shift of Si-L_{2,3} edge
 - Indicates gradual progression of Si bonding character
- HAADF-STEM images are least reliable in w_{TL} determinations
 - EELS is more consistent; more informative (chemistry and bonding)
- Smallest transition region for 4hr anneal $\rightarrow w_{TL} = 5.3$ nm
- Described objective w_{TL} determination method for future comparison

Remaining Questions

- Structure and composition of interface, but what about bonding configurations?
 - High energy resolution ELNES study would give more bonding information
 - Could be correlated with XPS depth profiles across the interface
- How does NO treatment compare with N₂ and P passivation?
 - Do we observe the same $w_{TL} \mu$ correlation and how do w_{TL} values compare?
- Can we detect N concentrations at the interface using EELS?
 - Longer collection times, thicker sample, and optimized collection parameters needed

Acknowledgements

- ARL Contracts W911NF-11-2-0044 and W911NF-07-2-0046.
- NispLab at UMD supported by NSF and MRSEC
- Dr. Joshua Schumacher and Mike Hernandez at NIST

THANK YOU

Questions and comments?