

SYSTEMATIC CHARACTERIZATION OF THE SIC/SIO₂ TRANSITION LAYER IN NO-ANNEALED MOSFETS

Joshua Taillon,¹ Joon Hyuk Yang,^{1*} Claude Ahyi,² John Rozen,^{3†} John Williams,² Leonard Feldman,^{3‡} Tsvetanka Zheleva,⁴ Aivars Lelis,⁴ and Lourdes Salamanca-Riba¹

Thursday, November 29, 2012 2012 Fall MRS Meeting - II15.05 *Supported by ARL under contract no. W911NF-11-2-0044 and W911NF-07-2-0046.

¹ Materials Science and Engineering, University of Maryland College Park

² Physics, Auburn University

³ Physics and Astronomy, Vanderbilt University

⁴ U.S. Army Research Laboratory

ege Park

* LG Innotek, Korea

* IBM T.J. Watson Research Center, NY

* Institute for Advanced Materials, Rutgers University, NJ

Outline

- Introduction, Motivation, Background, Goals
- Experimental Methods
 - EELS, Spectrum Imaging, w_{TL} determination
- Transition layer width results
 - Composition ratios
 - Interdiffusion
 - High-angle annular dark field scanning TEM (HAADF-STEM)
 - Chemical shift
- Correlation with electronic measurements
- Conclusions, Remaining questions, etc.

Motivation and Background

- SiC: Very promising for high temperature, high power, and high radiation environments
 - 4H polytype (bulk):¹ $E_g = 3.23 \text{ eV}, \mu_e \approx 850 \frac{\text{cm}^2}{\text{V}\cdot\text{s}}, \epsilon = 10, \kappa = 3.7 \frac{\text{W}}{\text{cm}\cdot\text{°C}}$
 - MOSFET devices limited by poor channel carrier mobility and reliability
 - Typical effective device μ_e : SiC ~ 85 $\frac{\text{cm}^2}{\text{V}\cdot\text{s}}$; Si ~ 300 $\frac{\text{cm}^2}{\text{V}\cdot\text{s}}$
 - Electrically active defects at the SiC/SiO₂ interface inhibit devices during channel inversion
- Possible nature of these defects?

Excess carbon at the interface (perhaps?)	K. Chang, <i>et al</i> . J. Electron. Mater. 32, 464 (2003). X. Shen, <i>et al</i> . J. Appl. Phys. 108, 123705 (2010). Hatakeyama, <i>et al.</i> Mater. Sci. Forum 679, 330 (2010).
3-fold Si and C coordination and C _i	M. Di Ventra, <i>et al.</i> Phys. Rev. Lett. 83 , 1624 (1999). S. Pantelides, <i>et al.</i> Mater. Sci. Forum 527 , 935 (2006).
$V_{\rm Si}$ and $V_{\rm o}$ at interface	C. Cochrane, <i>et al</i> . Appl. Phys. Lett. 100, 23509 (2012). J. Rozen, <i>et al</i> . J. Appl. Phys. 105, 124506 (2009).

¹Semiconductor database: http://www.ioffe.ru/SVA/NSM/Semicond/SiC/index.html

Previous Work

- Transition layer at SiC/SiO₂ interface
 - EELS evidence of enhanced C concentration in SiC at interface
 - T. Zheleva, et al. Appl. Phys. Lett. 93, 022108 (2008).

- Transition layer width (w_{TL}) lowered by NO post-anneal
 - Measured with HAADF-STEM intensity profiles —
 - Inverse linear correlation between w_{TL} and mobility
 - T. Biggerstaff, et al. Appl. Phys. Lett. **95**, 032108 (2009).

Goals

- Previous work lacks systematic investigation of NO-anneal time
- Physically and chemically characterize transition layer as a function of NO post-annealing time
 - Systematic set of SiC MOSFETs that received o-240 minute post-oxidation anneals at 1175°C
 - Using HRTEM, HAADF-STEM, and EELS
 - Correlate with measured device properties
 - Investigate conflicting claims of excess C at interface
- Develop reliable, objective, and reproducible methods by which to determine $w_{\rm TL}$
 - For comparison to previous works and future sample sets

TEM Specimen Preparation

Cross-sectional TEM specimen prepared with FEI Helios Dual-beam FIB

HRTEM of Transition Layer

Transition Layer Width Measures

- Relative composition ratios from EELS ($^{C}/_{Si}$ and $^{O}/_{Si}$)
 - Eliminates many sources of systematic error¹
- Relative "interdiffusion" of C and O (EELS)
 - C into SiO₂ and O into SiC; which contributes more to w_{TL}?
- HAADF-STEM image intensity profiles
 - HAADF reveals Z-contrast from variations in atomic composition
- Chemical shift of Si-L_{2,3} EELS edge
 - Well-documented shift in edge onset energy (SiC: 100 eV; SiO₂: 104 eV)
 - G. Auchterlonie, *et al.* Ultramicroscopy, **31**, 217 (1989).
 - Reveals information about local Si bonding

¹ R. Brydson and R.M.S. (UK), *Electron Energy Loss Spectroscopy*, Microscopy Handbooks (Bios, 2001).

O-K

350

e٧

400

450

500

550

600

Spectrum Imaging

w_{TL} from Composition Ratios

• Profile of atomic ratio maps:

- w_{TL} results:
 - NO-anneal shows significant improvement
 - O/_{Si} slightly larger than C/_{Si} always

*w*_{TL} from "Interdiffusion" lengths

- Useful to see tails of C
 concentration in SiO₂ and O in SiC
 - Normalized bulk concentrations and measured tails with derivative

¹ M. Di Ventra and S. Pantelides, Phys. Rev. Lett. **83**, 1624 (1999). ² M. Di Ventra and S. Pantelides, J. Electro. Mater. **29**, 353 (2000).

• w_{TL} results:

- NO-anneal again shows significant improvement
- O in SiC always larger than C in SiO2
- Why?
 - C more efficiently removed during oxidation¹

O solubility in SiC very low²

$Si-L_{2,3}$ Chemical Shift

- EELS fine structure (ELNES) reflects local unoccupied density of states
 - Edge onset → minimum energy needed to excite core shell e⁻
 - Semiconductor \rightarrow insulator
 - Band gap widens, core levels depressed relative to E_F¹
 - Charge transfer from Si \rightarrow C/O
 - Onset shifts to higher energy

¹ D. Muller, Ultramicroscopy **78**, 163 (1999).

Si- $L_{2,3}$ Chemical Shift

- Track inflection point of edge onset across interface¹
- Gradual and monotonic shift
 - Bonding changes, possible strain
 - Implies a mix of Si-C and Si-O bonding

¹ D. Muller, P. Batson, and J. Silcox, Physical Review B 58, 11970 (1998).

- Significant NO anneal improvement
 - Best method to track transition layer
 - (Relatively) insensitive to spectral noise
- Characterizes bonding instead of composition

HAADF-STEM Image Intensity¹

- Z-contrast from enhanced scattering cross-sections of heavier elements
 - w_{TI} defined as width between peak and inflection point

¹ After: T. Biggerstaff, et al. Appl. Phys. Lett. 95, 032108 (2009).

- w_{TI} results:
 - Poorer trend in w_{τι}
 - HAADF images varied between samples
 - No excess C, but bright intensity line (like [1])
 - Reason: thickness variations due to preferential milling?

Electronic Measurements

- Data taken by J. Rozen
 - J. Rozen, et al. IEEE Trans. Electron. Dev. 58, 3808 (2011).
 - J. Rozen, et al. J. Appl. Phys. 105, 124506 (2009).
- w_{TL} correlates inverse-linearly μ_{FE}
 - Confirming previous work results
- NO-anneal removes mobilitylimiting defects
- Theoretical limit of effect:

•
$$\mu_e \sim 120 \frac{\mathrm{cm}^2}{\mathrm{V}\cdot\mathrm{s}}$$

Conclusions

- w_{TL} decreases with increasing NO anneal time
 - Chemical shift of Si-L_{2,3} edge onset was most reliable method
 - No excess C on either side of interface
- Smallest transition region for $4hr \text{ anneal} \rightarrow w_{TL} = 5.3 \text{ nm}$
- Developed w_{TL} determination method for future comparison

Acknowledgements

- ARL Contracts W911NF-11-2-0044 and W911NF-07-2-0046.
- NispLab at UMD supported by NSF and MRSEC
- Dr. Joshua Schumacher and Mike Hernandez at NIST

11/29/2012 - J. Taillon

THANK YOU

Questions and comments?