SYSTEMATIC CHARACTERIZATION OF THE SiC/SiO$_2$
TRANSITION LAYER IN NO-ANNEALED MOSFETs

Joshua Taillon,¹ Joon Hyuk Yang,¹* Claude Ahyi,² John Rozen,³† John Williams,² Leonard Feldman,³‡ Tsvetanka Zheleva,⁴ Aivars Lelis,⁴ and Lourdes Salamanca-Riba¹

Thursday, November 29, 2012
2012 Fall MRS Meeting - II15.05
*Supported by ARL under contract no. W911NF-11-2-0044 and W911NF-07-2-0046.

¹ Materials Science and Engineering, University of Maryland College Park
² Physics, Auburn University
³ Physics and Astronomy, Vanderbilt University
⁴ U.S. Army Research Laboratory

Present addresses:
* LG Innotek, Korea
† IBM T.J. Watson Research Center, NY
‡ Institute for Advanced Materials, Rutgers University, NJ
Outline

• Introduction, Motivation, Background, Goals
• Experimental Methods
 • EELS, Spectrum Imaging, w_{TL} determination
• Transition layer width results
 • Composition ratios
 • Interdiffusion
 • High-angle annular dark field scanning TEM (HAADF-STEM)
 • Chemical shift
• Correlation with electronic measurements
• Conclusions, Remaining questions, etc.
Motivation and Background

• SiC: Very promising for high temperature, high power, and high radiation environments
 • 4H polytype (bulk):\[E_g = 3.23 \text{ eV}, \mu_e \approx 850 \frac{\text{cm}^2}{\text{V} \cdot \text{s}}, \varepsilon = 10, \kappa = 3.7 \frac{\text{W}}{\text{cm} \cdot ^\circ \text{C}} \]
 • MOSFET devices limited by poor channel carrier mobility and reliability
 • Typical effective device μ_e: SiC $\approx 85 \frac{\text{cm}^2}{\text{V} \cdot \text{s}}$; Si $\approx 300 \frac{\text{cm}^2}{\text{V} \cdot \text{s}}$
 • Electrically active defects at the SiC/SiO$_2$ interface inhibit devices during channel inversion

• Possible nature of these defects?

\(^1\) Semiconductor database: http://www.ioffe.ru/SVA/NSM/Semicond/SiC/index.html
Previous Work

- Transition layer at SiC/SiO$_2$ interface
 - EELS evidence of enhanced C concentration in SiC at interface

- Transition layer width (w_{TL}) lowered by NO post-anneal
 - Measured with HAADF-STEM intensity profiles
 - Inverse linear correlation between w_{TL} and mobility
Goals

• Previous work lacks systematic investigation of NO-anneal time

• Physically and chemically characterize transition layer as a function of NO post-annealing time
 • Systematic set of SiC MOSFETs that received 0-240 minute post-oxidation anneals at 1175°C
 • Using HRTEM, HAADF-STEM, and EELS
 • Correlate with measured device properties
 • Investigate conflicting claims of excess C at interface

• Develop reliable, objective, and reproducible methods by which to determine w_{TL}
 • For comparison to previous works and future sample sets
TEM Specimen Preparation

- Cross-sectional TEM specimen prepared with FEI Helios Dual-beam FIB

- Lamella on grid: 6 μm × 3 μm × ≈ 80 nm

- Low-mag TEM
HRTEM of Transition Layer

- High quality crystalline SiC
- No defects, secondary phases, etc.
- Structurally sharp interface
Transition Layer Width Measures

- Relative composition ratios from EELS ($\frac{C}{Si}$ and $\frac{O}{Si}$)
 - Eliminates many sources of systematic error\(^1\)
- Relative “interdiffusion” of C and O (EELS)
 - C into SiO\(_2\) and O into SiC; which contributes more to w_{TL}?
- HAADF-STEM image intensity profiles
 - HAADF reveals Z-contrast from variations in atomic composition
- Chemical shift of Si-$L_{2,3}$ EELS edge
 - Well-documented shift in edge onset energy (SiC: 100 eV; SiO\(_2\): 104 eV)
 - Reveals information about local Si bonding

Spectrum Imaging

Spectrum Image (60 minute anneal)

SiC

SiO₂

Background-subtracted spectrum (60 minute anneal)

Si-L

C-K

O-K
w_{TL} from Composition Ratios

- Profile of atomic ratio maps:

- w_{TL} results:
 - NO-anneal shows significant improvement
 - O_{Si} slightly larger than C_{Si} always

No excess C at interface
\(w_{\text{TL}} \) from “Interdiffusion” lengths

- Useful to see tails of C concentration in \(\text{SiO}_2 \) and O in SiC
 - Normalized bulk concentrations and measured tails with derivative

- \(w_{\text{TL}} \) results:
 - NO-anneal again shows significant improvement
 - O in SiC always larger than C in \(\text{SiO}_2 \)
 - Why?
 - C more efficiently removed during oxidation
 - O solubility in SiC very low

Si-$L_{2,3}$ Chemical Shift

- EELS fine structure (ELNES) reflects local unoccupied density of states
 - Edge onset \rightarrow minimum energy needed to excite core shell e^-
 - Semiconductor \rightarrow insulator
 - Band gap widens, core levels depressed relative to E_F
 - Charge transfer from Si \rightarrow C/O
 - Onset shifts to higher energy

1 D. Muller, Ultramicroscopy 78, 163 (1999).
Si-$L_{2,3}$ Chemical Shift

- Track inflection point of edge onset across interface\(^1\)
- Gradual and monotonic shift
 - Bonding changes, possible strain
 - Implies a mix of Si-C and Si-O bonding

- Significant NO anneal improvement
 - Best method to track transition layer
 - (Relatively) insensitive to spectral noise
 - Characterizes bonding instead of composition

HAADF-STEM Image Intensity1

- Z-contrast from enhanced scattering cross-sections of heavier elements
 - w_{TL} defined as width between peak and inflection point

- w_{TL} results:
 - Poorer trend in w_{TL}
 - HAADF images varied between samples
 - No excess C, but bright intensity line (like [1])
 - Reason: thickness variations due to preferential milling?

Electronic Measurements

• Data taken by J. Rozen

• w_{TL} correlates inverse-linearly μ_{FE}
 - Confirming previous work results

• NO-anneal removes mobility-limiting defects

• Theoretical limit of effect:
 - $\mu_e \sim 120 \frac{cm^2}{V \cdot s}$
Conclusions

• w_{TL} decreases with increasing NO anneal time
 • Chemical shift of Si-$L_{2,3}$ edge onset was most reliable method
 • No excess C on either side of interface
• Smallest transition region for 4hr anneal $\rightarrow w_{TL} = 5.3$ nm
• Developed w_{TL} determination method for future comparison
Acknowledgements

- ARL Contracts W911NF-11-2-0044 and W911NF-07-2-0046.
- NispLab at UMD – supported by NSF and MRSEC
- Dr. Joshua Schumacher and Mike Hernandez at NIST
THANK YOU

Questions and comments?