

Joshua Taillon,¹ Joon Hyuk Yang,^{1*} Claude Ahyi,² John Rozen,^{3†} John Williams,² Sarit Dhar,² Leonard Feldman,⁴ Tsvetanka Zheleva,⁵ Aivars Lelis,⁵ and Lourdes Salamanca-Riba¹

Monday, March 18, 2013

2013 March APS Meeting - A23.00002

*Supported by ARL under contract no. W911NF-11-2-0044 and W911NF-07-2-0046.

¹ Materials Science and Engineering, University of Maryland College Park

² Physics, Auburn University

³ Physics and Astronomy, Vanderbilt University

- ⁴ Institute for Advanced Materials, Rutgers University, NJ
- ⁵ U.S. Army Research Laboratory

Present addresses: * LG Innotek, Korea † IBM T.J. Watson Research Center, NY

Motivation and Background

- SiC: Very promising for high temperature, high power, and high radiation environments
 - 4H polytype (bulk): $E_g = 3.23 \text{ eV}, \mu_e \approx 850 \frac{\text{cm}^2}{\text{V}\cdot\text{s}}, \epsilon = 10, \kappa = 3.7 \frac{\text{W}}{\text{cm}\cdot^\circ\text{C}}$
 - MOSFET devices limited by poor channel carrier mobility and reliability
 - Best μ_{FE} : SiC ~ 125 $\frac{\text{cm}^2}{\text{V}\cdot\text{s}}$ (a-face P passivation)^{\$}; Si ~ 600 $\frac{\text{cm}^2}{\text{V}\cdot\text{s}}$ (uniaxial <100> strain)^{\$}
 - Electrically active defects at the SiC/SiO₂ interface inhibit devices during channel inversion
- How to passivate these defects and improve mobility?
 - Incorporation of N at interface
 - NO anneal improves μ_i , but can introduce additional defects⁺
 - * N-plasma anneal incorporates N without additional oxidation $^{\ominus}$
 - Incorporation of P at interface
 - * Anneal in $P_2O_5 P$ dopants have lower activation energy than N^{\otimes}
 - N and P passivate dangling bonds

^eK. Uchida *et al.*, IEDM Tech. Dig. 229-232 (2004).

[⊖] X. Zhu *et al.*, Solid-State Electron. **57**, 76–79 (2011). [⊗] Y. Sharma *et al.*, Solid-State Electron. **68**, 103–107 (2012).

⁶G. Liu *et al.*, IEEE Electron. Dev. Lett. **34**, 181–183 (2013).

⁺ J. Rozen, in *Physics and Technology of Silicon Carbide Devices* (InTech, 2012), pp. 251–278.

3

Central questions

How do the structure and chemistry of the 4H-SiC/SiO₂ interface change under various processing conditions?

What do these changes tell us about the effect of these passivation processes?

Outline

- Characterization of transition layer in NO-annealed 4H-SiC MOSFETs
 - J. Taillon *et al.*, *J. Appl. Phys.* 113, 044517 (2013).
 - Experimental Methods
 - TEM with HAADF-STEM and EELS Spectrum Imaging
 - Transition layer width results
 - Traditional measurements
 - Chemical shift measurement
 - Correlation with electronic properties
- Comparison with P and N-plasma passivated 4H-SiC devices
 - Preliminary results

Previous Work

- Transition layer at SiC/SiO₂ interface
 - EELS evidence of enhanced C concentration in SiC at interface
 - T. Zheleva, et al. Appl. Phys. Lett. 93, 022108 (2008).

- Transition layer width (w_{TL}) lowered by NO post-anneal
 - Measured with HAADF-STEM intensity profiles —
 - Inverse linear correlation between w_{TL} and mobility
 - T. Biggerstaff, et al. Appl. Phys. Lett. **95**, 032108 (2009).

HRTEM of Transition Layer

7

Transition Layer Width Measures

- Chemical shift of Si-L_{2,3} EELS edge
 - Well-documented shift in edge onset energy (SiC: 100 eV; SiO₂: 104 eV)
 - G. Auchterlonie, et al. Ultramicroscopy, **31**, 217 (1989).
 - Reveals information about local Si bonding
- Relative composition ratios from EELS ($^{C}/_{Si}$ and $^{O}/_{Si}$)
 - Eliminates many sources of systematic error¹
- HAADF-STEM image intensity profiles
 - HAADF reveals Z-contrast from variations in atomic composition

¹ R. Brydson and R.M.S. (UK), *Electron Energy Loss Spectroscopy*, Microscopy Handbooks (Bios, 2001).

Spectrum Imaging

Background-subtracted spectrum (60 minute anneal)

9

Si- $L_{2,3}$ Chemical Shift

- EELS fine structure (ELNES) reflects local unoccupied density of states
 - Edge onset → minimum energy needed to excite core shell e⁻
 - Semiconductor \rightarrow insulator
 - Band gap widens, core levels depressed relative to E_{F¹}
 - Charge transfer from Si \rightarrow C/O
 - Onset shifts to higher energy

¹ D. Muller, Ultramicroscopy **78**, 163 (1999).

Si- $L_{2,3}$ Chemical Shift

- Track inflection point of edge onset across interface¹
- Gradual and monotonic shift
 - Bonding changes, possible strain
 - Implies a mix of Si-C and Si-O bonding

¹ D. Muller, P. Batson, and J. Silcox, Physical Review B 58, 11970 (1998).

- Significant NO anneal improvement
 - Best method to track transition layer
 - (Relatively) insensitive to spectral noise
- Characterizes bonding instead of composition

w_{TL} from Composition Ratios

Plot profiles of atomic ratio maps:

- Results:
 - Narrower w_{TL} as function of NO-anneal time
 - Agrees with chemical shift method
 - No excess carbon signal

Electronic measurements/Conclusions

- w_{TI} correlates inverse-linearly μ_{FF}
 - Confirming previous work results by Biggerstaff et al. with systematic samples
- NO-anneal removes/passivates mobility-limiting defects
 - Compositionally and electronically
- Conclusions:
 - w_{TI} decreases with increasing NO anneal time
 - New chemical shift of Si-L_{2,3} edge onset was most reliable method
 - No excess C on either side of interface

J. Taillon, L. Salamanca-Riba, et al., J. Appl. Phys. 113, 044517 (2013).

Latest Samples

Treatment	Processing time	Crystal face	Mobility $\left[\frac{\text{cm}^2}{\text{V}\text{s}}\right]$
NO	2 hours	Si	42 ¹
Р	4 hours	Si	80 1
N-plasma	6 hours	Si	30 ²

Sample processing performed at Auburn and/or Rutgers

¹ G. Liu *et al.*, IEEE Electron. Dev. Lett. **34**, 181–183 (2013).

² S. Dhar *et al.*, Unpublished.

Preliminary Results

 w_{TL} measured by chemical shift of Si- $L_{2,3}$ edge across interface

Conclusions

- NO-anneal:
 - Increase in anneal time \rightarrow Decrease in w_{τ_1}
 - No excess carbon at interface
 - Introduced new w_{TL} measurement method

- NO, P, & N-plasma
 - Large variation in μ
 - Preliminary results suggest different μ trend than NO samples alone
 - Research is ongoing

Acknowledgements

- ARL Contracts W911NF-11-2-0044 and W911NF-07-2-0046.
- NISPLab at UMD supported by NSF and MRSEC
- Dr. Joshua Schumacher and Mike Hernandez at NIST

THANK YOU

Questions and comments?