@ A. JAMES CLARK
\'.‘.."_A: SCHOOL OF ENUINEERING

CHARACTERIZATION OF THE OXIDE-SEMICONDUCTOR
INTERFACE IN NO, P, AND N-PLASMA PASSIVATED 4H-
SIC/SIO, STRUCTURES USING TEM

Joshua Taillon,* Aaron Modic,2 Claude Ahyi,2 John Williams,2 Sarit Dhar,?
Gang Liu, 3 Leonard Feldman,3 Tsvetanka Zheleva,4 Aivars Lelis,4 and
Lourdes Salamanca-Riba*

8t Annual SiC MOS Workshop ("SiC Device Review")
University of Maryland, College Park
Thursday, August 22, 2013 — 2:00PM

*Supported by ARL under contract no. W911NF-11-2-0044 and W911NF-07-2-0046.

* Materials Science and Engineering, University of Maryland College Park
2 Physics, Auburn University

3 Institute for Advanced Materials, Rutgers University

4U.S. Army Research Laboratory

THE DEPARTMENT of

MATERIALS SCIENCE AND ENGINEERING



A. JAMES CLARK

08/22/2013 - J. Taillon - jtaillon@umd.edu L NG

THyis

Motivation and background

- SiC: Very promising for high temperature, high power, and high radiation

environments
- MOSFET devices limited by poor channel carrier mobility and reliability

2 2
- Best device UFE- SiC~125 % (a-face P passivation)o; Si~ 600 % (uniaxial <100> strain)e

- Electrically active defects at the SiC/SiO, interface inhibit devices during channel
inversion

- How to passivate these defects and improve mobility?

- Incorporation of N at interface

« NO anneal —improves u, but can introduce additional defects’

+ N-plasma anneal — incorporates N without additional oxidation®
- Incorporation of P at interface

* Annealin P,O.—P dopants have lower activation energy than N®

« Nand P passivate dangling bonds/modify interface

°G. Liu et al., IEEE Electron. Dev. Lett. 34, 181183 (2013). © X. Zhu et al., Solid-State Electron. 57, 76—79 (2011).
*K. Uchida et al., IEDM Tech. Dig. 229-232 (2004). ® Y. Sharma et al., Solid-State Electron. 68, 103-107 (2012).
*J. Rozen, in Physics and Technology of Silicon Carbide Devices (InTech, 2012), pp. 251—278.
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Central questions

How do the structure and chemistry of the
4H-SiC/SiO, interface change under various
processing conditions?

What do these changes tell us about the
effects of these passivation processes?
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Outline

- Background/Review of prior work and methods
- Characterization of transition layer in NO-annealed 4H-SiC MOSFETSs

« J. Taillon etal., J. Appl. Phys. 113, 044517 (2013).
« Transition layer width compared to electronic properties

- Recent work
« Comparison of NO-annealed samples with P and N-plasma passivated 4H-
SiC devices
« Refinement of experimental methods
« Comparison of a-face and Si/C-face devices
« Comparison and analysis of passivation methods
* Analysis of time dependence in N, P passivation

- Future areas of inquiry
- TEM investigation of interfacial roughness
- XPS depth profiles and correlation with EELS fine structure

THE DEPARTMENT of MATERIALS SCIENCE AND ENGINEERING 4



08/22/2013 - J. Taillon - jtaillon@umd.edu IR S

BACKGROUND/PRIORWORK
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Spectrum Imaging

SiC i
Spatial Drift }
5nm
HAADF Image Spectrum Image
(60 minute NO anneal) (60 minute NO anneal)

THE DEPARTMENT of MATERIALS SCIENCE AND ENGINEERING



A% A JAMES CLARK
. o SCHOC

08/22/2013 - J. Taillon - jtaillon@umd.edu

OL OF ENUINEERING

Spectrum imaging
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Transition layer width measures

* Using electron energy loss spectroscopy (EELS) along with high-angle annular
dark field (HAADF) imaging within a transmission electron microscope (TEM)
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Si-L, , chemical shift

« EELS fine structure (ELNES)
reflects local unoccupied
density of states

« Semiconductor — insulator

- Edge onset - minimum energy
needed to excite core shell e

- Band gap widens, core levels
depressed relative to E.*

EELS Signal [e counts]

:|||| |
100

105

110

PR T T T R A T N NI R
115 120 125
Energy [eV] * Onset shifts to higher energy

130 135 - Charge transfer from Si - C/O

1D. Muller, Ultramicroscopy 78, 163 (1999).
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Si-L, , chemical shift

106 .

- Track inflection point of edge onset

across interface?
104 } :

- Gradual and monotonic shift
» Si bonding changes gradually and ‘ ]
uniformly across the interface - )

X (nm)

Edge Position (eV)

*D. Muller, P. Batson, and J. Silcox, Physical Review B 58, 11970 (1998).
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NO-anneal samples

- Significant NO anneal

» Six SiC/SiO, samples: 0-240 improvement
minutes of NO-anneal - Best method to track transition
layer
LIl | | | < - (Relatively) insensitive to spectral
[T1T | | | noise
0 1530 60 120 240

» Characterizes bonding instead
of composition

minutes

150 um n-channel MOSFET

10

devices :
- deposited epitaxial layer (N = gz_i

5 x 10> cm™3) = o ‘%\
- (0001) 4° miscut wafers from -;; A

- Cross-sections from gate
region of devices

i N
Cree, Inc. oF “}...*______{_ }

0 50 100 150 200 250
NO anneal time [min]
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NO-anneal results

- wyq_correlates inverse-linearly pg, _____NO-Anneal Time [min]
« Confirming previous work results by SN0 S L g
Biggerstaff et al. with systematic samples —_50 -
G! L
- NO-anneal removes/passivates 2 l ;I %
mobility-limiting defects EYE LI }
- Compositionally and electronically 530 ! \\\
B E Ny
i o e
 Conclusions: =20F N
. . 5 w : =
+ wq_decreases with increasing NO wo L "%
anneal time s 10F e ¥
- New chemical shift of Si-L, , edge a ¢
onset was most reliable method 0 "—“"'g‘“ "*‘*;*—"'""—é"'*“—“;*"*“‘
* No excess C on either side of wre [nm]
interface

J. Taillon, L. Salamanca-Riba, et al., J. Appl. Phys. 113, 044517 (2013).
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RECENTWORK
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Method refinements

- Optimization of EELS-SI collection
- Each data set is equivalent to ~250 line

scans
« Compared to single line scans/small SI
from last year '
100%
% A
. inB
- Development of scripts to
automate and improve data
processing ;
3
. o 0% .l) ...... .Z.Q ...... "—l _. e 2%
- Redefined extent of transition layer ' Distance—»

. c 0 0 B~ BLE FIGURE 36.4. Schematic diagram showing a composition profile mea-
USIng_ 98 /0/2 A) deﬂnltlon as SUggeSted sured across an interface at which an atomically discrete composition
by W| | I IAMs a nd Ca rter change occurs (like the simulation in Figure 36.2). The measured spatial

. L. . . . resolution can be defined in terms of the extent (L) of the measured profile

- This definition includes contributions between the 2% and 98% points.

f % of elect
rom 90%% of electrons Williams and Carter (2009), p. 667
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Method refinements
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NO-anneal data
from 2012

Smaller wq, values,
but same trend
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NO anneal

® Cface
Si face device appears much like NO- C face device is 8° miscut, giving
samples analyzed previously with 4° greater roughness (larger than
miscut evident steps); does this affect properties?
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NO anneal

140 T ¥ T T .
W Std. NO - Si face |
A Std. NO - a face
120 - @® Std. NO - C face T
w 100 .
2
S sl A ]
£
P oo -
40 - -
— -
20 B 1 1 1 ]
2 - 6 8
a face device has very flat interface w,, [nm]

+ Identical wy_regardless of device face
+ All samples annealed for 2 hours
+ Mobility improvement observed for a-face
+ Indicates influence of another factor on mobility, besides just wy,
+ Roughness of C-face sample does not seem to have large effect
+ Thin oxide in Si-face sample does not seem to have significant effect
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Recent work

Device
Process
Crystal
face

Si- (0001)

a-(1120)

C-(0001)
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P anneal

Mobility [cm®/V s]
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- B Std. P - Siface
A i
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100 -
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40 |- .
20 |- 1 i I i 1 i ]
2 4 6 8
W [nm]

HRTEM images do not reveal obvious
reason for mobility enhancement
Observation of expected wy “trend”
(only two samples)
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SiL SiL,

23

PSG compared 0 Cwm w W
to SIO,

* Spectrafrom NO and N,P samples
all well matched to SiO, reference

SiO, Samples

—— S8i0, from a-face (NO)

* Spectrafrom P-annealed samples . Soswant s
. : 2 2
also well matchedto SiO, | P e Si0, Reference
o o L 1 1 1
reference, with some variance il N~ :

* Very little EELS evidence of P

within oxide, but:
* RatioofSilL,, ELNES
changes in PSG

1.18

PSG S&pes

 Cannot quantify P signal due to i ™" ——PSG from Si-face
............ s 3 —— PSG from a-face
edge overlap, but does alter P e Si0, Reference
electronic response within e TR tiwest  wweee P Reference
specimen 90 120 150 180
Energy (eV)
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Recent work

Device
Process
Crystal
face

Si- (0001)

a-(1120)

C-(0001)
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N,P anneal

N,P devices look very similarto NO Very similarinterface appearance
Siand C-face images and roughness characteristics
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N2P anneal

”, 140 :
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6hr annealed sample looks very Chemical shift measurements reveal
similar to the others larger w;, that agree with low p
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Update to results from EMC

Si-L, , Edge Energy (eV)
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Conclusions — —

120 .
X 0 B Std. NO - Si face
* NO, P, & N-plasma samples: 2 z A 56 NO - auc
o o td. NO - C face
Large variation in yand w > ® ’ ® Std. P - Siface
g M U g A Std. P-aface
§ 80 [J N-plasma - Si face (2h)
0 B N-plasma - Si face (4h)
+ Less obvious trend than NO annealed @ B Noplasma - Si face (6h)
mples alon
samples alone e -
20 ,
° - - 1 2 4 6
a-face and P-anneal samples have higher u g New data
« Lower roughness does not guarantee smaller
wq, (when considering C-face sample) 140 . ‘
& MNOC-anneal Si face
120 - (anneal tme shown in minutes) |
- Seem to have two distinct regimes, with
similar but distinct relationships g T e
. . 2 X 120 60
+ More data needed to confirm this & 80} \ |
= "l 'll |
£ o} \ ||' i
- Need to investigate fine structure in more g " * ”' . ]
detail to gain additional insight ———
20 ol —=
15" 53 ,
o— . - 2 Previous
W (o) NO data
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Conclusions

* NO, P, & N-plasma samples:

- Large variation in g and wq

+ Less obvious trend than NO annealed 140 ,
samples alone

120 |-

a-face/P

- a-face and P-anneal samples have higher u ol

« Lower roughness does not guarantee smaller 80 [

wq, (when considering C-face sample)

Mobility [em*/V s]

60 -

- Seem to have two distinct regimes, with -
similar but distinct relationships

« More data needed to confirm this 20 |-

- Need to investigate fine structure in more o NO/N P
detail to gain additional insight
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FUTURE WORK
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Roughness from HRTEM reconstructions

* Roughness of interface can be
used to calculate power
spectrum of interface

* Estimation of surface
scattering-limited mobility
possible from this %2

* How to measure?
* Difficult to digitize based on
single image
e HRTEM focal series
G(u) = T(u)FFu) reconstruction allows
G(u) = A()E(w)2 sin y(u) F(uw) extraction of pure wave

1 function phase
Af) = n(Af)AE + = nC A3 b
x(w, Af) = n(Af)Au Tl « Could also accomplish this

tGoodnick, S., et al., Physical Review B, 32, 8171-8186 (198s). through electron
2Zhao, Y., etal., IEEE Electron Device Letters, 30, 987—989 (2009). hO|Og raphy
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XPS depth profiles [~ =27 {277
) " e
* Motivation:
* Suboxide states . R
observed in slow T e
oxide growth |E-EY 1 EEY
* 4H-SiC substrate - I N ket
heat treated at ; - o
1600°C for weeks T
under N, ambient
« Unintentional slow ‘
oxidation from Thick
residual O, '

. Data courtesy of K. Gaskell, L.
*Grunthaner, F. J. et al., Journal of Vacuum Science and Technology, 16, 1443 (1979) Shahamat, and M. Al-Sheikhly
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XPS depth profiles

- “Spin-etch” depth
profile to investigate
native oxide of SiC in
NO-annealed devices

- Technique developed by
Grunthaner et al. to
investigate Si/SiO,

o
H .
v ¥
—
&

*Grunthaner, F. J. et al., Journal of Vacuum Science and Technology, 16, 1443 (1979)
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THANK YOU

Questions and comments?
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