

CHARACTERIZATION OF THE OXIDE-SEMICONDUCTOR INTERFACE IN NO, P, AND N-PLASMA PASSIVATED $_4H$ -SIC/SIO₂ STRUCTURES USING TEM AND XPS

Joshua Taillon,¹ Aaron Modic,² Claude Ahyi,² John Williams,² Sarit Dhar,² Gang Liu, ³ Leonard Feldman,³ Karen J. Gaskell,⁴ Tsvetanka Zheleva,⁵ Aivars Lelis,⁵ and Lourdes Salamanca-Riba¹

2013 Fall MRS Meeting - T8.04 Hynes, Room 202 - Boston, MA Wednesday December 4, 2013 – 2:30PM

*Supported by ARL under contract no. W911NF-11-2-0044 and W911NF-07-2-0046, and NSF GRFP Grant DGE 1322106

- ¹ Materials Science and Engineering, University of Maryland, College Park
- ² Physics, Auburn University
- ³ Institute for Advanced Materials, Rutgers University
- ⁴ Chemistry and Biochemistry, University of Maryland, College Park
- ⁵ U.S. Army Research Laboratory

Motivation and background

- SiC: Very promising for MOS devices in high temperature, high power, and high radiation environments
 - MOSFET devices limited by poor channel carrier mobility and reliability
 - Best device μ_{FE} : SiC ~ 125 $\frac{\text{cm}^2}{\text{V}\cdot\text{s}}$ (a-face P passivation)⁶; Si ~ 600 $\frac{\text{cm}^2}{\text{V}\cdot\text{s}}$ (uniaxial <100> strain)⁶
 - Electrically active defects at the SiC/SiO₂ interface inhibit devices during channel inversion
 - Interfacial roughness/unique bonding states
- How to passivate these defects and improve mobility?
 - Incorporation of N at interface
 - NO anneal improves μ_i , but can introduce additional defects⁺
 - * N-plasma anneal incorporates N without additional oxidation \ominus
 - Incorporation of P at interface
 - * Anneal in $P_2O_5 P$ dopants have lower activation energy than N $^{\otimes}$
 - N and P passivate dangling bonds/modify interface

⁶G. Liu *et al.*, IEEE Electron. Dev. Lett. **34**, 181–183 (2013).

[•]K. Uchida *et al.*, IEDM Tech. Dig. 229-232 (2004).

[⊖] X. Zhu *et al.*, Solid-State Electron. **57**, 76–79 (2011). [⊗] Y. Sharma *et al.*, Solid-State Electron. **68**, 103–107 (2012).

⁺ J. Rozen, in *Physics and Technology of Silicon Carbide Devices* (InTech, 2012), pp. 251–278.

Central questions

How do the structure and chemistry of the transition layer at the 4H-SiC/SiO₂ interface change under various processing conditions?

What do these changes tell us about the effects of these passivation processes?

Outline

- Background/Review of prior work and methods
 - Characterization of transition layer in NO-annealed 4H-SiC MOSFETs
 - J. Taillon *et al.*, *J. Appl. Phys.* 113, 044517 (2013).
 - Transition layer width compared to electronic properties
- Recent work
 - Comparison of NO-annealed samples with P and N-plasma passivated 4H-SiC devices
 - Ongoing XPS experiments

BACKGROUND/PRIOR WORK

EELS Spectrum imaging

7

Si- $L_{2,3}$ chemical shift

- EELS fine structure (ELNES) reflects local unoccupied density of states
 - Semiconductor \rightarrow insulator
 - Edge onset → minimum energy needed to excite core shell e⁻
 - Band gap widens, core levels depressed relative to E_F¹
 - Charge transfer from Si \rightarrow C/O
 - Onset shifts to higher energy

¹ D. Muller, Ultramicroscopy **78**, 163 (1999).

Si- $L_{2,3}$ chemical shift

- Track inflection point of edge onset across interface¹
- Gradual and monotonic shift
 - Si bonding changes gradually and uniformly across the interface
- Measure extent of transition region (w_{TL}) as "rise time" of step

¹ D. Muller, P. Batson, and J. Silcox, Physical Review B 58, 11970 (1998).

NO-anneal results

- 6 SiC/SiO₂ samples: o-240 minutes of NO-anneal
- w_{TL} correlates inverse-linearly μ_{FE}
- NO-anneal removes/passivates mobility-limiting defects
 - Compositionally and electronically
- Conclusions:
 - *w*_{TL} decreases with increasing NO anneal time
 - New chemical shift of Si-L_{2,3} edge onset was most reliable method

J. Taillon, L. Salamanca-Riba, *et al.*, *J. Appl. Phys.* 113, 044517 (2013).

RECENTWORK

NO anneal

- Identical w_{TL} regardless of device face
 - All samples annealed for 2 hours
- Another aspect to mobility, besides *w*_{TL}
- Roughness of Cface sample does not seem to have large effect
 - *a*-face?

Recent work

Device Process Crystal face	NO	Ρ	N2P
Si - (0001)	2 hrs	4 hrs	2, 4, 6 hrs
a - (1120)	2 hrs	4 hrs	Х
C - (0001)	2 hrs	Х	Х

Std. P - Si face Std. P - a face

6

P anneal

Recent work

Device Process Crystal face	NO	Ρ	N2P
Si - (0001)	2 hrs	4 hrs	2, 4, 6 hrs
a - (1120)	2 hrs	4 hrs	X
C - (0001)	2 hrs	Х	Х

N2P anneal

- Chemical shift measurements reveal larger w_{TL} that agree with low μ

TL Conclusions

- NO, P, & N-plasma samples:
 - + Large variation in μ and $w_{\rm TL}$
 - Less obvious trend than NO annealed samples alone
 - α -face and P-anneal samples have higher μ
 - Higher roughness does not guarantee larger w_{TL} (when considering C-face sample)
 - Seem to have two distinct regimes, with similar but distinct relationships
 - More data needed to confirm this
 - Need to investigate fine structure in more detail to gain additional insight

ONGOING WORK

Further HRTEM analysis

 $G(\boldsymbol{u}) = T(\boldsymbol{u})F(\boldsymbol{u})$ $G(\boldsymbol{u}) = A(\boldsymbol{u})E(\boldsymbol{u})2\sin\chi(\boldsymbol{u})F(\boldsymbol{u})$ $\chi(\boldsymbol{u},\Delta f) = \pi(\Delta f)\lambda u^2 + \frac{1}{2}\pi C_s \lambda^3 u^4$

¹Goodnick, S., *et al.*, Physical Review B, **32**, 8171–8186 (1985). ²Zhao, Y., *et al.*, IEEE Electron Device Letters, **30**, 987–989 (2009). ³http://www.qstem.org

- Roughness can be used to calculate power spectrum
 - Estimation of surface scattering-limited μ possible from this ^{1,2}
- How to measure?
 - Difficult to digitize based on single image
 - HRTEM focal series
 reconstruction → complex
 wave function
 - Comparison with multislice simulations (QSTEM)³
- Geometric Phase Analysis (GPA)
 - Strain mapping at interface

XPS depth profiles

- Well-controlled chemical depth profile
- Motivation:
 - Suboxide states observed near SiC in slow oxide growth
 - Compare Si 2p and C 1s transition states in XPS to Si-L_{2,3} and C-K EELS

- "Spin-etch" depth profile to investigate native oxide of SiC in NO-annealed devices
 - Technique developed by Grunthaner *et al.* to investigate Si/SiO₂

¹ Grunthaner, F. J. *et al.*, Journal of Vacuum Science and Technology, **16**, 1443 (1979)

Acknowledgements

- ARL Contracts W911NF-11-2-0044 and W911NF-07-2-0046.
- NSF Graduate Research Fellowship Grant DGE 1322106
- NISPLab at UMD supported by NSF and MRSEC
- Dr. Joshua Schumacher at NIST

THANK YOU

Questions and comments?