

CHARACTERIZATION OF THE OXIDE-SEMICONDUCTOR INTERFACE IN 4H-SIC/SIO₂ STRUCTURES USING TEM AND XPS

Joshua Taillon,¹ Karen Gaskell², Gang Liu, ³ Leonard Feldman,³ Tsvetanka Zheleva,⁴ Aivars Lelis,⁴ and Lourdes Salamanca-Riba¹

9th Annual SiC MOS Workshop ("SiC Device Review") University of Maryland, College Park Thursday, August 14, 2014

*Supported by ARL under contract no. W911NF-11-2-0044 and W911NF-07-2-0046.

¹ Materials Science and Engineering, University of Maryland College Park
² Chemistry and Biochemistry, University of Maryland College Park
³ Institute for Advanced Materials, Rutgers University
⁴ U.S. Army Research Laboratory

2

Motivation and background

- SiC: Very promising for high temperature, high power, and high radiation environments
 - MOSFET devices limited by poor channel carrier mobility and reliability
 - Best device μ_{FE} : SiC ~ 125 $\frac{\text{cm}^2}{\text{V}\cdot\text{s}}$ (a-face P passivation)⁶; Si ~ 600 $\frac{\text{cm}^2}{\text{V}\cdot\text{s}}$ (uniaxial <100> strain)⁶
 - Electrically active defects at the SiC/SiO₂ interface inhibit devices during channel inversion
 - Other defects significantly affect the reliability and stability of devices over time
- What is the true nature of the interface, and how do our processing techniques really affect it?
 - EELS experiments suggest distinct transition region¹
 - Other results (XPS, MEIS, etc.) suggest more abrupt transition^{2,3,4,5}
 - What is NO post oxidation annealing really changing about the interface structurally and chemically?

- ⁴ P. Jamet, *et al.*, J. Appl. Phys., 90(10), 5058 (2001).
- ⁵ X. Zhu, *et al.*, Appl. Phys. Lett., 97(7), 071908 (2010).

¹ J. Taillon, L. Salamanca-Riba, *et al.*, J. Appl. Phys. 113, 044517 (2013).

²H. Watanabe, *et al.*, Appl. Phys. Lett., 99(2), 021907 (2011).

³ P. Tanner, *et al.*, J. Electron. Mater., 28(2), 109 (1999).

3

Central questions

How do the structure and chemistry of the 4H-SiC/SiO₂ interface change under NO anneal?

What do these changes tell us about the effects of the passivation process?

Outline

- Depth profiles and XPS
 - Development and refinement of SiO₂ spin-etch technique
 - Initial results from XPS depth profiles
- TEM-EELS on miscut samples
 - Analysis of oxidized and NO annealed samples with various crystallographic orientations
- Future areas of inquiry
 - TEM investigation of interfacial roughness
 - Further XPS depth profiles, valence band modeling, etc.

SPIN-ETCH DEVELOPMENT FOR DEPTH PROFILES

Motivation for XPS "spin-etch" depth profiles

- By etching very close to the interface and performing angle-resolved XPS (ARXPS), we can learn about the differences caused by an NO post-oxidation anneal in a depth-sensitive manner
- Most etching/profiling techniques however, cause extreme modifications of the surface being investigated
 - Sputtering not an option due to induced damage and preferential oxygen removal
 - Dip etching difficult to control, and leaves significant residue
- How to faithfully profile the interfacial region?
 - Need a technique that will not significantly modify interface or cause damage to underlying structure

Spin-etch Profiling

- Developed by Grunthaner, Grunthaner, and Vasquez for use on Si/SiO₂ interfaces in the 1970s^{1,2}
- Further refined by Fenner *et al.* in the 1980s³
- Dropwise etching of SiO₂ proven to be a highly controllable technique, with very little contamination of surface compared to other methods

Sample and treatment	C (ML)	O (ML)	F (ML)
Spin etched with HPLC grad	e		
etch native oxide	0.025 ± 0.005	0.005 ± 0.002	0.010 ± 0.002
etch thermal oxide	0.037 ± 0.013	0.005 ± 0.001	0.008 ± 0.002
Spin etched with USP-grade		1	
etch native oxide	0.052	0.011	0.042
Dip-etched native oxide			
with HPLC grade	0.19	0.16 <	0.002
with technical grade	0.25	0.13	0.10
Si(111) cleaved in UHV			
10 min afterwards	0.007	0.0008	***
Ar ⁺ -ion sputtering		11 m - 12 M - 12 M - 1	
while at 600 °C	0.16	0.11	***

Order of magnitude improvement in surface residue, as measured by XPS³ (reported in monolayers)

¹F. J. Grunthaner, P. J. Grunthaner, R. P. Vasquez, B. F. Lewis, J. Maserjian and A. Madhukar, J. Vac. Sci. Technol., 16(5), 1443 (1979)

² R. P. Vasquez and F. J. Grunthaner, J. Appl. Phys., 52(5), 3509 (1981).

³ D. B. Fenner, D. K. Biegelsen and R. D. Bringans, J. Appl. Phys., 66(1), 419 (1989).

Etching experimental setup

- Small samples (1 x 0.5 cm) spinning at 3000 rpm on vacuum chuck
- Etchant solution is 10:1:1 ratio of EtOH:H₂O:49.5% HF
- Rinse sample with alcohol and H₂O before etching
- Manually pipette 25 μL drops in groups of 5 drops (each group is 1 "step")
- Dry sample using N₂ blow gun after each step
- Controls explored:
 - Number of steps
 - Oxide type (wet or dry SiO₂ on Si)
 - Time etchant is left before drying
 - Time between etch steps

9

UMD process refinement

- Refine techniques on similarly-sized SiO₂/Si samples
- 1) Measure SiO_2 thickness profile using ellipsometry
- 2) Etch, changing some parameter to control
- 3) Remeasure SiO₂ thickness profile, taking etched amount as data point

Results – control via number of etch steps

Results – control via number of etch steps

"Short" exposure (~2 seconds between steps) Wet thermal oxide <u>0.5 nm</u> removed per step "Short" exposure (~2 seconds between steps) Dry thermal oxide <u>o.4 nm</u> removed per step

Results - control via etching time

Controlled amount of time left on spinner after 9 "short" etch steps

Dry thermal oxide

<u>o.2 nm</u> removed per second remaining on spinner

Indicates additional etching, without introduction of more etchant; vapor phase etching means process timing is important

Results – control via etching time

Controlled duration of each step by varying time between each step from 2 to 15 seconds; 9 steps

Dry thermal oxide

<u>o.2 nm</u> removed per second of step time

Again, indicates that timing of process is critical, likely due to vapor effects

14

Uniformity of etch

- Spin etch process retains original oxide profile, indicating uniform etching
- Plots below show ellipsometry measurements of oxide thickness across SiC samples after 2 etch steps, retaining oxide profile

Process limitations

- Spin-etch is extremely effective at removing material from 1 monolayer up to about 10 nm
 - Beyond this, unintended edge effects, accelerated etching, and cumulative error make the method unreliable
 - It is expected that a dip etch (for large-scale removal) followed by spinetch would retain the desirous characteristics while being more efficient
- Trying to remove too much SiO₂ at once caused unintended over-etching of SiC samples for XPS analysis

INITIAL XPS RESULTS

Samples investigated

- 4 SiC/SiO₂ samples were provided by Rutgers
 - All are n-type with 10¹⁶ cm⁻³ doping
 - Two samples were just oxidized (labeled O1 and O2)
 - Two samples received 2hr NO post-oxidation anneal (labeled N1 and N2)
 - Starting oxide thicknesses were ~55nm
- First test was to see if there was any perceptible effect of our spin-etch process in the XPS
 - Two of the samples were etched very slightly (about 2nm removed)
 - Two were cleaned (EtOH rinse) and analyzed as received

Etch effects – XPS Survey Spectra

No immediately observable effect of spin-etch on XPS survey scans

Etch effects – Si 2p signal

- Two distinct angle measurements from same sample (etched with 2 steps) ٠
- Si 2p signal in thick SiO, (that was etched with two steps) looks exactly as expected for ٠ normal bulk SiO₂, indicating that the spin-etch does not chemically modify the Si

SiC sample oxide profiles (ellipsometry)

XPS Results – Si 2p

- Fit Si 2p with spin-orbit split components
 - Constrain fit by known physical phenomena to reduce spurious peak fits
 - 3 components found: Substrate, oxide, and substrate surface/interface

Sample O1 – completely etched oxidized SiC sample

XPS Results – Si $2p^{3}/_{2}$

 Looking at the peak position (binding energy) for each sample, we can see something interesting:

	Sample	Substdaet(et _o)(I _s)	Oxide(I _o)	Substrate surface (I _s)	
Thin oxide layers	01 - normal	100.5	102.5	100.8	
	01 - 40°	100.6	We ² can de	termine these samp	es
	01 - 20°	100.6	₩ @₽ €€COM	letely etched, and h	ave
	N1 - normal	100.3	reførmed a	n "native o xide" that	is at a
	N1 - 40°	100.4	lower bind		
	N1 - 20°	100.5	102.5	100.9	
"Thicker″ oxide layers	02 - normal	108.4	103.1	100.7	
	<i>O2 - 40°</i>	108.2	103.2 Those same	100.7	
	02 - 20°	108.0			
	N2 – normal	108.0	103.0 0000 rom:	100.7	tibe
	N2 - 40°	100.9	102.9	100.7	
	N2 - 20°	100.0	103.0	100.8	

23

XPS–Si 2p

- 2p signals for Si in samples with thicker oxide do not show any evidence of "suboxide" or "native" oxide states
- Also no apparent influence of N in the Si 2p, but we might not expect to see it anyway due to the low concentration

XPS N 15

- 4 components found in constrained fit
- Primary fit is consistent with silicon nitride-like bonding
- Other peaks likely to be successively more oxygen bonding
- See an additional component at high energy (compared to paper) but we're not ready to identify it with any certainty

¹Y. Xu, L. C. Feldman, et al., J. Appl. Phys., 115(3), 033502 (2014).

XPS N 15

Elemental composition (peak area integration)					
	Measurement	C 15 %	N 15 %	O 15 %	Si 2p %
Thin	N1 - normal	40.95	1.67	9.56	47.82
oxide layers	N1 – 40°	41.43	2.66	16.44	39.47
	N1 – 20°	41.20	2.73	20.59	35.49
"Thicker"	N2 — normal	29.92	1.01	21.80	47.28
oxide layers	N2 – 40°	33.59	1.37	29.46	35:58
	N2 – 20°	36.28	1.45	33.57	28.70

- 4 components found in constrained fit
- Primary fit is consistent with silicon nitride-like bonding
- Other peaks likely to be successively more oxygen bonding
- See an additional component at high energy (compared to paper) but we're not ready to identify it with any certainty
- N content decreases when thick oxide is
 present, and is still present after all original oxide is etched off
 - N is localized in SiC near interface (like the recent paper from Rutgers¹)

¹Y. Xu, L. C. Feldman, et al., J. Appl. Phys., 115(3), 033502 (2014).

XPSC15

- Appears there is more C bonded to higher electronegativity atoms than we would expect from just contamination
- Possible C-O bonding at the interface
- Appears that NO anneal might reduce C-O peak (and perhaps C-O defect), but this needs more investigation

XPS valence band

- Valence band is related to density of states
- Lots of information, but difficult to interpret and will need modeling
- Possible small differences (to be analyzed using principle component analysis)
- Future collaboration with N. Goldsman's group to investigate further

28

SiC sample oxide profiles (ellipsometry)

XPS oxide thickness compared to ellipsometry

THE DEPARTMENT of MATERIALS SCIENCE AND ENGINEERING 29

Auger parameter

- Augeremission:
 - Additional electron emitted caused by absorption of the energy created when another electron falls down to fill a hole left by the photoemission process
- Energy of this electron can vary
 - Many pathways for the emission to occur
- Auger parameter
 - Relatively obscure XPS measurement
 - Difference between the kinetic energy (E_{k}) of ٠ the Auger transition and the E_k of the core level photoelectron that caused the transition:

 $\alpha = E_k(C_1C_2C_3) - E_k(C)$

 Auger parameter is proportional to the amount of polarization of the bonds around the atom

http://www.xpsfitting.com/2012/08/auger-peaks-andauger-parameter.html

Auger parameter

- Using the angle resolved measurements, we can plot α vs the distance the photoelectron travels through the film
- It appears that the less • the distance through the film (closer to interface), α increases
- *α* for NO samples is always slightly higher
- Interesting phenomenon • that has not been observed before that we are actively investigating further

XPS Summary

- Spin-etch does not seem to create artefacts in the data
- At room temperature, SiC forms a native oxide with different binding energies than typical SiO₂
- None of these different bonding energies (or "suboxide states") were observed near the interface in the Si 2p signals
- N 1s peak confirms that N is located mostly in SiC, and is located near interface, with many bonding configurations
- C 1s peak suggests that additional C-O bonding near interface and possible reduction of C-O bonding upon NO anneal
- Valence band spectra show little difference, but more work being done
- Auger parameter suggests significant change in oxide character while approaching interface, but much more work being done

STEM-EELS OF MISCUT SAMPLES

Spectrum Imaging - areas

Spectrum Imaging - lines

One spectrum per line

Si- $L_{2,3}$ chemical shift

- EELS fine structure (ELNES) reflects local unoccupied density of states
 - Semiconductor \rightarrow insulator
 - Edge onset → minimum energy needed to excite core shell e⁻
 - Band gap widens, core levels depressed relative to E_F¹
 - Charge transfer from Si \rightarrow C/O
 - Onset shifts to higher energy

¹ D. Muller, Ultramicroscopy **78**, 163 (1999).

Si- $L_{2,3}$ chemical shift

- Track inflection point of edge onset across interface¹
- Gradual and monotonic shift
 - Si bonding changes gradually and uniformly across the interface
- Measured using rise/fall time calculations typical in signal processing

Example from new sample Si-O₂-o

¹ D. Muller, P. Batson, and J. Silcox, Physical Review B 58, 11970 (1998).

Samples investigated

- 2 x 3 matrix aimed at comparing substrate orientation (and miscut) with processing conditions:
 - NO POA is for 2hr, all SiC substrates are n-type, SiO₂ ~60nm thick

Sample Labels:	Only oxidized	NO Post-annealed
Si-face on-axis	Si-O ₂ -o	Si-N-o
Si-face miscut (4°)	Si-O ₂ -4	Si-N-4
a-face on-axis	a-0 ₂ -0	a-N-o

08/14/2014 - J. Taillon/L. Salamanca-Riba

W_{TL} measurements

- Results from STEM EELS transition layer measurements show that w_{TL} values are similar
- w_{TL} in NO-annealed samples for these devices are actually slightly larger than the non-annealed
- a-face interfaces are the smallest, which does correspond with their higher mobilities (in NO)
 - 40 cm²/Vs for Si-face
 - 85 cm²/Vs for a-face

FUTURE WORK

Roughness from HRTEM reconstructions

 $G(\boldsymbol{u}) = T(\boldsymbol{u})F(\boldsymbol{u})$ $G(\boldsymbol{u}) = A(\boldsymbol{u})E(\boldsymbol{u})2\sin\chi(\boldsymbol{u})F(\boldsymbol{u})$ $\chi(\boldsymbol{u},\Delta f) = \pi(\Delta \boldsymbol{f})\lambda u^2 + \frac{1}{2}\pi C_s \lambda^3 u^4$

¹Goodnick, S., *et al.*, Physical Review B, **32**, 8171–8186 (1985). ²Zhao, Y., *et al.*, IEEE Electron Device Letters, **30**, 987–989 (2009).

- Roughness of interface can be used to calculate power spectrum of interface
 - Estimation of surface scattering-limited mobility possible from this ^{1,2}
- How to measure?
 - Difficult to digitize based on single image
 - HRTEM focal series reconstruction allows
 extraction of pure wave function phase
 - Could also accomplish this through electron holography

Strain measurement: ^a geometric phase analysis

- Utilizing reconstructed phase, can measure strain captured in the interface
- Has been used to measure strain at misfit dislocations in Al-Pb interfaces¹
- Currently working on implementation of this method, but results are not ready yet

¹ H. Rösner, C. T. Koch and G. Wilde, Acta Mater., 58(1), 162 (2010).

THE DEPARTMENT of MATERIALS SCIENCE AND ENGINEERING

1 nm

Conclusions

- Spin-etch technique has been developed and used to do initial XPS profiles
- XPS results show some interesting ledes for future investigation
 - N bonding states, valence band differences, auger parameter of oxide
- STEM-EELS results on miscut samples show unexpected results that require additional thought/analysis
 - Roughness and strain measurements at the SiC/SiO₂ interfaces in these samples are underway

Acknowledgements

- ARL Contracts W911NF-11-2-0044 and W911NF-07-2-0046.
- NSF Graduate Research Fellowship Grant DGE 1322106
- NISPLab at UMD supported by NSF and MRSEC
- Dr. Joshua Schumacher at NIST

THANK YOU

Questions and comments?