

## CHARACTERIZATION OF THE OXIDE-SEMICONDUCTOR INTERFACE IN 4H-SIC/SIO<sub>2</sub> STRUCTURES USING TEM AND XPS<sup>\*</sup>

Joshua Taillon,<sup>1</sup> Karen Gaskell,<sup>2</sup> Gang Liu,<sup>3</sup> Leonard Feldman,<sup>3</sup> Sarit Dahr,<sup>4</sup> Tsvetanka Zheleva,<sup>5</sup> Aivars Lelis,<sup>5</sup> and Lourdes Salamanca-Riba<sup>1</sup>

MRS Fall 2014, T6.07 University of Maryland December 3, 2014 – Hynes 300

\*Supported by ARL under contract no. W911NF-11-2-0044 and W911NF-07-2-0046 and NSF Graduate Research Fellowship Grant DGE 1322106 (Josh Taillon)

- $^{\rm 1}$  Materials Science and Engineering, University of Maryland College Park
- <sup>2</sup> Chemistry and Biochemistry, University of Maryland College Park
- <sup>3</sup> Institute for Advanced Materials, Rutgers University
- <sup>4</sup> Department of Physics, Auburn University
- <sup>5</sup> U.S. Army Research Laboratory





2

## Motivation and background

- SiC: Very promising for high temperature, high power, and high radiation environments
  - MOSFET devices limited by poor channel carrier mobility and reliability
  - Best device  $\mu_{FE}$ : SiC ~ 125  $\frac{\text{cm}^2}{\text{V}\cdot\text{s}}$  (a-face P passivation)<sup>1</sup>; Si ~ 600  $\frac{\text{cm}^2}{\text{V}\cdot\text{s}}$  (uniaxial <100> strain)<sup>2</sup>
  - Electrically active defects at the SiC/SiO<sub>2</sub> interface inhibit devices during channel inversion
  - Other defects significantly affect the reliability and stability of devices over time
- What is the true nature of the interface, and how do our processing techniques really affect it?
  - EELS experiments suggest distinct transition region<sup>2</sup>
  - Other results (XPS, MEIS, etc.) suggest more abrupt transition <sup>3-6</sup>
  - What is NO post oxidation annealing really changing about the interface structurally and chemically?

<sup>2</sup> K. Uchida et al., IEDM Tech. Dig. 229-232 (2004).

<sup>5</sup> P. Jamet, *et al.*, J. Appl. Phys., 90(10), 5058 (2001).

<sup>6</sup> X. Zhu, et al., Appl. Phys. Lett., 97(7), 071908 (2010).

<sup>&</sup>lt;sup>1</sup> G. Liu *et al.*, IEEE Electron. Dev. Lett. **34**, 181–183 (2013).

<sup>&</sup>lt;sup>3</sup> J. Taillon, L. Salamanca-Riba, et al., J. Appl. Phys. 113, 044517 (2013).

<sup>&</sup>lt;sup>4</sup> H. Watanabe, et al., Appl. Phys. Lett., 99(2), 021907 (2011).

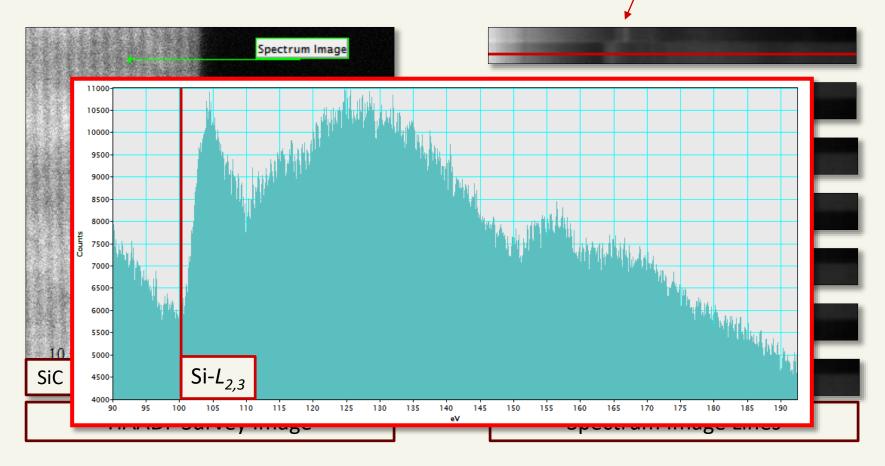
<sup>&</sup>lt;sup>5</sup> P. Tanner, *et al.*, J. Electron. Mater., 28(2), 109 (1999).



## Outline

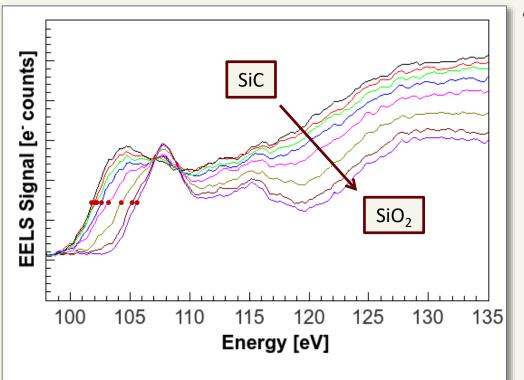
- TEM-EELS from on-axis and miscut samples
  - Analysis of oxidized and post oxidized NO annealed samples with various crystallographic orientations and annealing times.

- Depth profiles and XPS
  - Development and refinement of SiO<sub>2</sub> spin-etch technique
  - XPS depth profiles




# **TEM-EELS EXPERIMENTS**




## **EELS Spectrum Imaging**

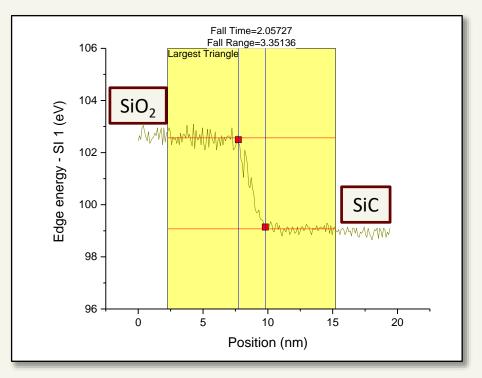
One spectrum per line





# Si-L<sub>2,3</sub> chemical shift




- EELS fine structure (ELNES) reflects local unoccupied density of states
  - Semiconductor  $\rightarrow$  insulator
  - Edge onset → minimum energy needed to excite core shell e<sup>-</sup>
  - Band gap widens, core levels depressed relative to E<sub>F</sub><sup>1</sup>
    - Charge transfer from Si  $\rightarrow$  C/O
    - Onset shifts to higher energy

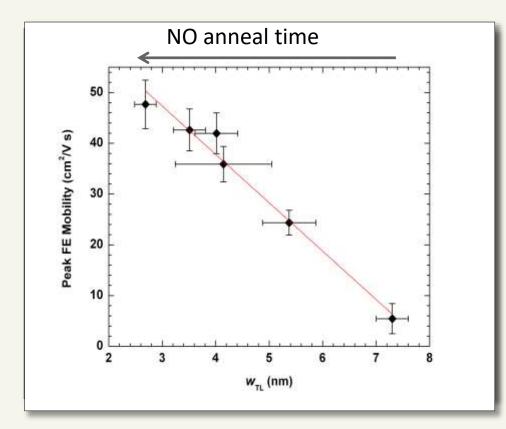
<sup>1</sup> D. Muller, Ultramicroscopy **78**, 163 (1999).



# Si- $L_{2,3}$ chemical shift

- Track inflection point of edge onset across interface<sup>1</sup>
- Gradual and monotonic shift
  - Si bonding changes gradually and uniformly across the interface
- Measured using rise/fall time calculations typical in signal processing




Example from new sample Si-O<sub>2</sub>-0

<sup>&</sup>lt;sup>1</sup> D. Muller, P. Batson, and J. Silcox, Physical Review B 58, 11970 (1998).



## NO-anneal results (previous results)

- $w_{TL}$  correlates inverse-linearly  $\mu_{FE}$ 
  - Also correlates with decreased trap density: John Rozen, *et al.* IEEE Trans. Elec. Dev. (2011).
- NO-anneal removes/passivates mobility-limiting defects
  - Compositionally and electronically
- Conclusions:
  - *w*<sub>TL</sub> decreases with increasing NO anneal time
    - New chemical shift of Si-L<sub>2,3</sub> edge onset was most reliable method
    - No excess C on either side of interface



J. Taillon, L. Salamanca-Riba, et al., J. Appl. Phys. 113, 044517 (2013).

Sample Labels:

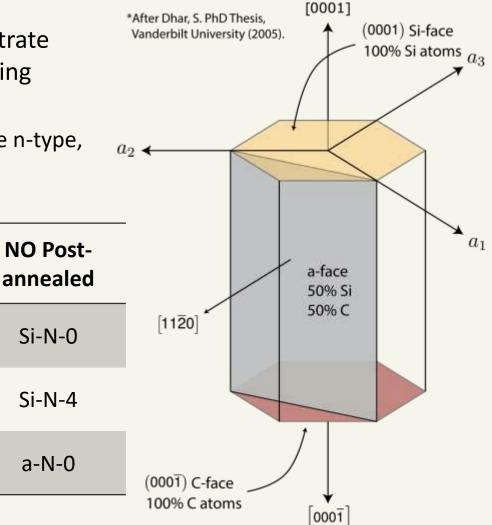
Si-face on-axis

Si-face miscut (4°)

a-face on-axis



## Samples investigated – TEM/EELS


- 2 x 3 matrix aimed at comparing substrate orientation (and miscut) with processing conditions:
  - NO POA is for 2hr, all SiC substrates are n-type, •  $SiO_2 \sim 60$  nm thick

**Only oxidized** 

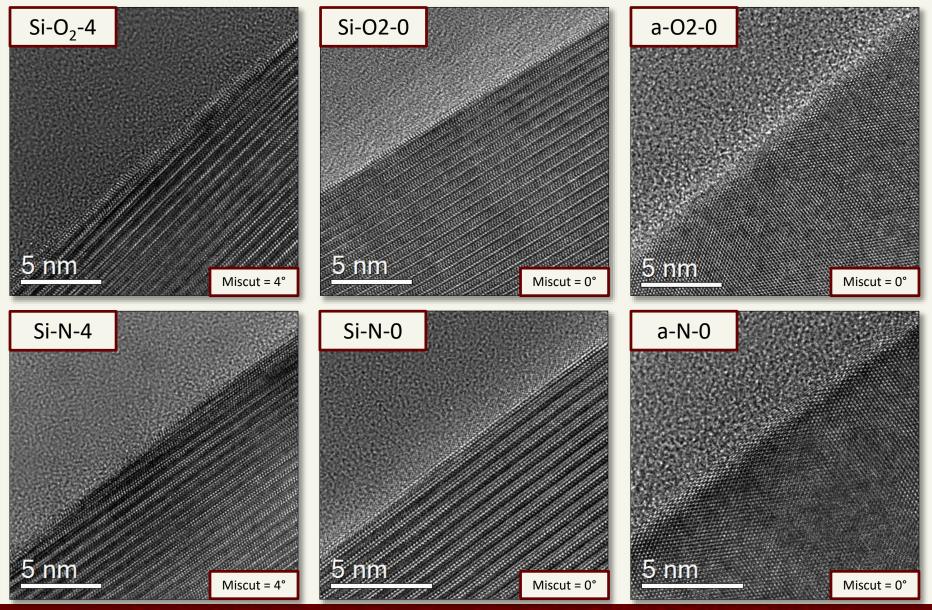
Si-O<sub>2</sub>-0

Si-O<sub>2</sub>-4

a-0<sub>2</sub>-0

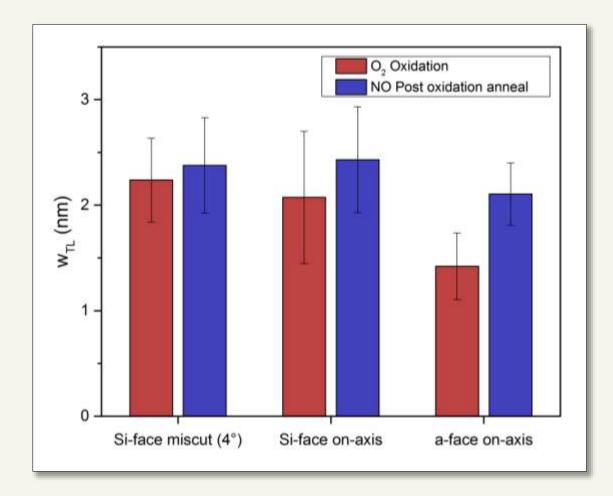


THE DEPARTMENT of MATERIALS SCIENCE AND ENGINEERING


Si-N-0

Si-N-4

a-N-0


### A. JAMES CLARK

### Si-face and *a*-face with and without NO annealing





## W<sub>TL</sub> measurements



- Results from STEM EELS transition layer measurements show that w<sub>TL</sub> values are similar
- *w*<sub>TL</sub> in NO-annealed samples for these devices are actually slightly larger than the non-annealed
- a-face interfaces are the smallest, which does correspond with their higher mobilities (in NO)
  - 40 cm<sup>2</sup>/V s for Si-face
  - 85 cm<sup>2</sup>/V s for a-face

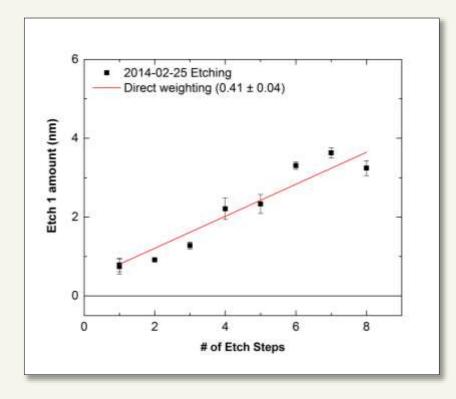


# **XPS DEPTH PROFILING**

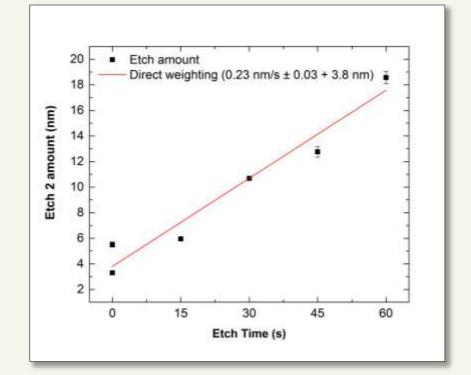


## **Etching experimental setup**




- Developed by Grunthaner, Grunthaner, and Vasquez for use on Si/SiO<sub>2</sub> interfaces in the 1970s<sup>1,2</sup>
- Further refined by Fenner *et al.* in the 1980s<sup>3</sup>

<sup>1</sup>F. J. Grunthaner, P. J. Grunthaner, et al., J. Vac. Sci. Technol., 16(5), 1443 (1979)
<sup>2</sup>R. P. Vasquez and F. J. Grunthaner, J. Appl. Phys., 52(5), 3509 (1981).
<sup>3</sup>D. B. Fenner, D. K. Biegelsen and R. D. Bringans, J. Appl. Phys., 66(1), 419 (1989).


- Etchant solution is 10:1:1 ratio of EtOH:H<sub>2</sub>O:49.5% HF (HPLC-grade)
- Manually pipette 25 μL drops in groups of 5 drops (each group is 1 "step")
- Dry sample using N<sub>2</sub> blow gun after each step
- Much more controllable, lower contamination, and less damaging than dip-etching or sputtering
- Controls explored:
  - Number of steps
  - Oxide type (wet or dry SiO<sub>2</sub> on Si)
  - Time etchant is left before drying
  - Time between etch steps



## Control via steps and time

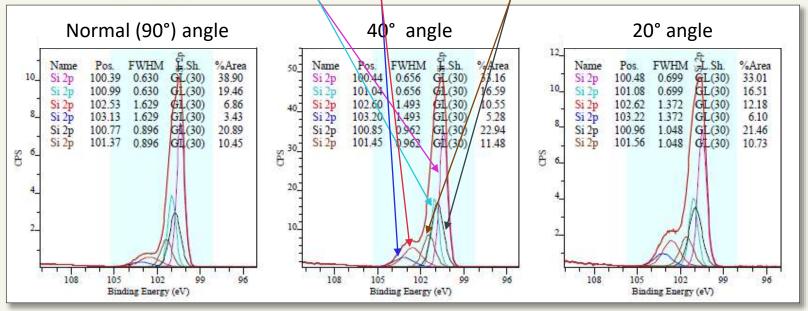


"Short" exposure (~2 seconds between steps) Dry thermal oxide <u>0.4 nm</u> removed per step

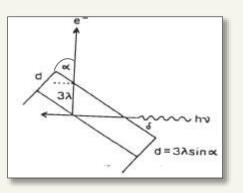


"Variable" exposure (change time between steps) Dry thermal oxide <u>0.2 nm</u> removed per second




## Sample overview

- 4 SiC/SiO<sub>2</sub> samples were provided by Rutgers
  - All are n-type with 10<sup>16</sup> cm<sup>-3</sup> doping
  - Two samples were just oxidized (labeled O1 and O2)
  - Two samples received 2hr NO post-oxidation anneal (labeled N1 and N2)
  - Starting oxide thicknesses were ~55nm
- Profiling:
  - O1 and N1 etched completely of SiO<sub>2</sub> with spin-etch technique
  - O2 etched to ~4nm thickness; N2 etched to ~2nm thickness
  - AR-XPS of Si-2p, N-1s, and C-1s




# XPS Results – Si 2p

- Fit Si 2*p* with spin-orbit split components
  - Angle-resolved XPS allows us to probe different depths
  - Constrained fit by known physical phenomena to reduce spurious peak fits, i.e.  $I_{2p1/2}:I_{2p3/2} = 1:2$
  - 3 components found: Substrate, oxide, and substrate surface/interface



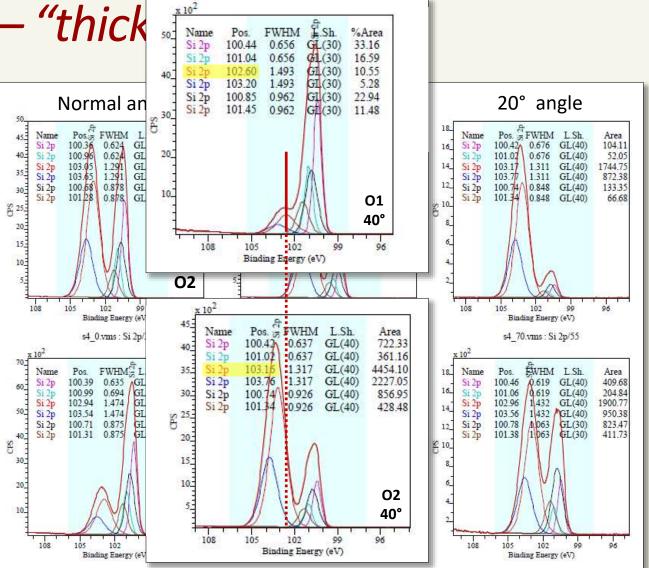
Sample O1 – completely etched oxidized SiC sample





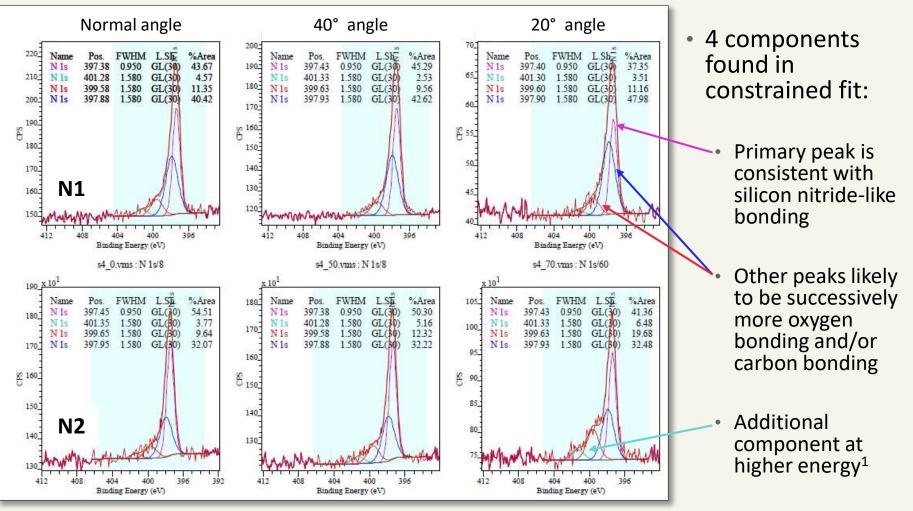
# XPS Results – Si $2p^{3}/_{2}$

 Looking at the peak position (binding energy) for each sample, we can see something interesting:


|                             | Sample          | Substate(e,)(I,) | Oxide(l <sub>o</sub> ) | Substrate surface (I <sub>s</sub> ) |         |
|-----------------------------|-----------------|------------------|------------------------|-------------------------------------|---------|
| Completely<br>etched        | 01 - normal     | 100.5            | 102.5                  | 100.8                               |         |
|                             | 01 - 40°        | 102.6            | Wê²can de              | termine these samp                  | es      |
|                             | 01 - 20°        | 100.6            | wi@i2e6comp            | letely etched, and h                | ave     |
|                             | N1 – normal     | 100.3            | reførmed a             | "native <sup>1</sup> 0xide" that    | is at a |
|                             | N1 - 40°        | 100.4            | lower bind             | ing energy0.8                       |         |
|                             | N1 - 20°        | 100.5            | 102.5                  | 100.9                               |         |
| 2 – 4 nm<br>oxide<br>layers | 02 - normal     | 108.4            | 103.1                  | 100.7                               |         |
|                             | <i>02 - 40°</i> | 108.2            | 103.2                  |                                     |         |
|                             | 02 - 20°        | 108.0            | 103.2                  | ples are at the norm                |         |
|                             | N2 – normal     | 108.0            |                        | ergy, so some of the                | true    |
|                             | N2 - 40°        | 100.9            | oxide rema             | 100.7                               |         |
|                             | N2 - 20°        | 108.0            | 103.0                  | 100.8                               |         |






 No apparent influence of N in the Si 2p, but we might not expect to see it anyway due to the low concentration

 2p signals for Si in samples with thicker oxide do not show any evidence of "suboxide" or "native" oxide states





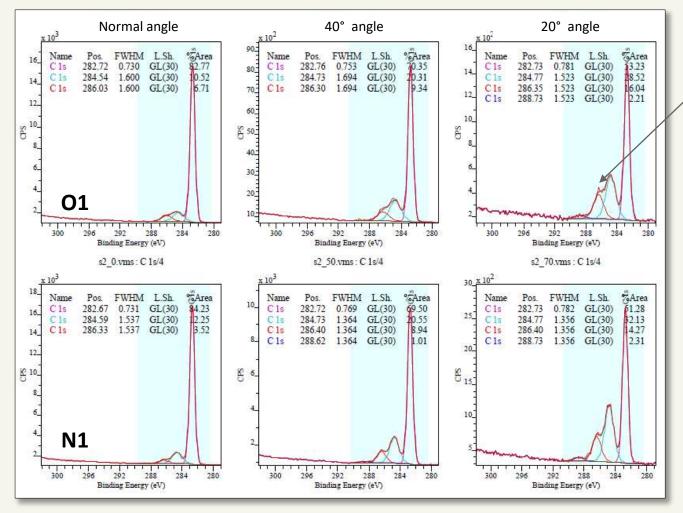
## XPS N 1*s*



<sup>1</sup>Y. Xu, L. C. Feldman, et al., J. Appl. Phys., 115(3), 033502 (2014).



## XPS N 1*s*


| -                    | Elemental composition (peak area integration) |        |        |              |         |  |  |  |
|----------------------|-----------------------------------------------|--------|--------|--------------|---------|--|--|--|
|                      | Measurement                                   | C 1s % | N 1s % | O 1s %       | Si 2p % |  |  |  |
| Completely<br>etched | N1 - normal                                   | 40.95  | 1.67   | 9.56         | 47.82   |  |  |  |
|                      | N1-40°                                        | 41.43  | 2.66   | 16.44        | 39.47   |  |  |  |
|                      | N1 – 20°                                      | 41.20  | 2.73   | 20.59        | 35.49   |  |  |  |
| 2 – 4 nm             | N2 – normal                                   | 29.92  | 1.01   | 21.80        | 47.28   |  |  |  |
| oxide                | N2 – 40°                                      | 33.59  | 1.37   | <u>29.46</u> | 35.58   |  |  |  |
| layers               | N2 – 20°                                      | 36.28  | 1.45   | 33.57        | 28.70   |  |  |  |

- N content decreases when thick oxide is present, and is still present after all original oxide is etched off
- N is localized in SiC near interface (in agreement with paper from Rutgers<sup>1</sup>)

<sup>1</sup>Y. Xu, L. C. Feldman, et al., J. Appl. Phys., 115(3), 033502 (2014).



## XPS C 1s



- Appears there is more C bonded to higher electronegativity atoms than we would expect from just contamination
- Possible C-O bonding at the interface
- Appears that NO anneal <u>might</u> reduce C-O peak (and perhaps C-O defect), but this needs more investigation



## Summary

- The shift of the Si-L<sub>2,3</sub> edge is a good indicator of the width of the transition region in 4H SiC/SiO<sub>2</sub>.
  - What physical change is occurring in the shifting region:
    - Variation in composition, strain, trap density, something else?
- NO post-anneal had been shown to decrease width of the transition region
  - Recent results suggest this may no longer be the case
- a-face samples have narrower transition region than Si-face.
- XPS indicates  $Si_3N_4$ -like N bonding at the interface.
- NO annealing reduces C-O signal in XPS possibly due to C-O defects.



## Acknowledgements

- ARL Contracts W911NF-11-2-0044 and W911NF-07-2-0046.
- NSF Graduate Research Fellowship Grant DGE 1322106
- NISPLab at UMD supported by NSF
- Dr. Joshua Schumacher at NIST





# THANK YOU

## Questions/comments: jtaillon@umd.edu or riba@umd.edu