

THREE DIMENSIONAL MICROSTRUCTURAL CHARACTERIZATION OF CATHODE DEGRADATION IN SOFCS USING FOCUSED ION BEAM AND SEM

Joshua Taillon, Christopher Pellegrinelli, Yilin Huang, Eric Wachsman, and Lourdes Salamanca-Riba University of Maryland, College Park

*Supported by DOE-SECA under contract no. DEFE0009084.

Abstract #724 May 13, 2014 , 5:00 PM Symposium F4: Ionic and Mixed Conducting Ceramics

Introduction

<u>Our goal:</u>

Use the FIB/SEM to characterize microstructural changes as cathode degradation occurs, and relate these changes to those in cell performance.

• <u>Micr</u>

- Previous more.
 - Quantification in the FIB/SEM:
 - J. Wilson, S. Barnett, *Electrochem. Commun.*, **11**(5), 1052 (2009).
 - D. Gostovic, E. Wachsman, et al., J. Am. Ceram. Soc., 94(2), 620 (2011).
 - Relationship to cell performance:
 - J. Smith, E. Wachsman, et al., Solid State Ionics, 180(1), 90 (2009).

Experimental - Button cell testing

Button cell

Cross-section view

- Symmetric cathode cells
- 8-YSZ electrolyte
- 50 wt. % LSM/YSZ cathode paste
- Sintered at 1000°C for 1hr
- Three conditions compared: •
 - Baseline ("Unaged")
 - Aged at 800°C for ~400 hr under ambient ("*Aged - dry*")
 - Aged at 800°C for ~400 hrs under 3% H₂O ("Aged - H_2O ")

3

Experimental – FIB/SEM nanotomography

- "C-trench" to prevent shadowing
- Protective Pt and fiducial marks
- Mill at o^o stage tilt
- Image at 38° tilt
- Unique FIB/SEM geometry means:
 - Improved contrast between LSM and YSZ
 - Limited detector shadowing effect
 - Increased acquisition time

Experimental – Imaging challenges

- Challenging system to image due to:
 - Poor RT conductivity
 - Similar electron yields from each phase

- Careful control of imaging parameters allows for charge contrast imaging
 - Low kV, long dwell, moderately high current (~few nA), perpendicular face

In-lens BSE

In-lens SE (Charge neutralization setting)

Long-dwell charging contrast (SE)

5

Experimental – post processing of data

- Avizo Fire:
 - Non-local means filtering of data¹:

 Watershed segmentation algorithm²:

¹Based on A. Buades *et al.* in *2005 IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.*, Vol. 2, p. 60. IEEE. ²L. Vincent and P. Soille, IEEE Trans. Pattern Anal. Mach. Intell., 13(6), 583 (1991).

Results – Unaged SOFC

Voxel size: 12 x 12 x 30 nm, SE signal collected on FEI Helios 650, NIST HFW: 9.5 μm; Depth: 5.25 μm; Total reconstructed cathode volume (excluding electrolyte): 276.84 μm³

Results – Aged, Dry SOFC

Voxel size: 10 x 10 x 10 nm, EsB signal collected on Zeiss Crossbeam 540, courtesy of Carl Zeiss and Fibics, Inc. HFW: 9.9 μm; Depth: 8.12 μm; Total reconstructed cathode volume (excluding electrolyte): 643.11 μm³

Results – Aged, H_2O SOFC

Voxel size: 10 x 10 x 10 nm, EsB signal collected on Zeiss Crossbeam 540, courtesy of Carl Zeiss and Fibics, Inc. HFW: 13.96 μm; Depth: 3.8 μm; Total reconstructed cathode volume (excluding electrolyte): 627.35 μm³

Results – Surface generation

Baseline

350.8 μm³

Aged-dry

761.1 µm³

 $Aged-H_2O$

667.2 μm³

D 11		1.5		<i>,</i> ,
Ronaind	DOX	aime	nsions	(µm)

5.250	7.031	9.504	8.121	9.380	9.991	4.003	11.940	13.960
Х	Y	Z	X	Y	Z	X	Y	Z

Results – Surface quantification

- Porosity is decreased in both aged samples
 - Additional sintering occurring during aging process

	Exp.YSZ	Exp. LSM	Obs. YSZ	Obs. LSM
Baseline			0.527	0.473
Aged-dry	0.52	0.48	0.503	0.497
Aged-H ₂ O			0.542	0.458

 Phase solid fractions remain similar to expected values (from source materials)

Results – Graded phase fractions

- Plotting phase volume fraction as a function of distance from cathode/electrolyte interface
 - Influence of aging on phase distribution
- Greater variability in aged samples:

σ of phase fraction	Pore	LSM	YSZ
Unaged	2.51	2.24	2.83
Aged-dry	3.75	5.45	2.61
Aged-H ₂ O	6.73	5.92	3.92

Results – Phase connectivity

Skeletonization of individual phases reveals connectivity

> Isolated LSM networks within volume

Contiguous YSZ and pore networks

Results – Triple phase boundaries

To be active, all three connected components of the TPB must be contiguous throughout the volume

Results – Triple phase boundaries

Results – Triple phase boundaries

*Relative to baseline	Baseline	Aged-dry	H2O
Active TPB [norm]	100%	32.5% *	27.5% *
Total ρ _{TPB} [μm/μm³]	19.2	9.69	8.57

 Absolute quantifications are forthcoming, but we can analyze differences between the two samples, which show decrease in all L_{TPB} values upon exposure to H₂O contamination

Results – Preliminary TEM/EDS work

STEM-EDS maps of Baseline SOFC cathode near electrolyte interface

 Distinct particles of LSM and YSZ

Results – Preliminary TEM/EDS work

STEM-EDS maps of Aged-dry SOFC cathode near electrolyte interface

- Still distinct particles of LSM and YSZ
- Perhaps more Mn distributed throughout YSZ

Results – Preliminary TEM/EDS work

STEM-EDS maps Aged-H2O SOFC cathode

- Distinct particles of LSM and YSZ
- Segregation of La and Mn at YSZ
 grain boundaries
- Sr is not localized at boundaries

Summary

Conclusions

- At these conditions, additional sintering causes changes in phase fractions throughout cathode
- *ρ*_{TPB,active} decreases when aged under H₂O contamination
- Segregation of La and Mn to YSZ grain boundaries in aged-H₂O (but not Sr)

Upcoming Work

- Observe sample aged in higher H₂O concentrations to confirm effects
- Analyze and quantify composition of segregation products using TEM/EELS
- Correlate with corresponding EIS data

THANK YOU

Questions and comments?