

THREE DIMENSIONAL MICROSTRUCTURAL CHARACTERIZATION OF CATHODE DEGRADATION IN SOFCS USING FOCUSED ION BEAM AND SEM

Joshua Taillon, Christopher Pellegrinelli, Yilin Huang, Eric Wachsman, and Lourdes Salamanca-Riba University of Maryland, College Park

*Supported by DOE-SECA under contract no. DEFE0009084 and NSF GRFP grant no. DGE 1322106.

8th Annual FIB/SEM Workshop February 25, 2015, 3:15 PM

2

Introduction to Solid oxide fuel cells

- Solid oxide fu
 - Low cost, fle
- Problems?
 - High operation
 - Cathode
 - H₂O, CO₂
 - Adverse e
- What is primary cause
 - Microstructure!
 - Previous work:
 - Quantification in the FIB/SEM:
 - J. Wilson, S. Barnett, *Electrochem. Commun.*, **11**(5), 1052 (2009).
 - D. Gostovic, E. Wachsman, et al., J. Am. Ceram. Soc., 94(2), 620 (2011).
 - Relationship to cell performance:
 - J. Smith, E. Wachsman, et al., Solid State Ionics, 180(1), 90 (2009).

<u>Our task:</u>

10

Use the FIB/SEM to characterize microstructural changes as cathode degradation occurs, and relate these changes to those in cell performance.

Series

Our goal:

Better understanding of the fundamental mechanisms behind cathode degradation.

Experimental - Button cell testing

Button cell

Cross-section view

- Symmetric cathode cells
 - 8-YSZ electrolyte
 - 50 wt. % LSM/YSZ cathode paste
- Sintered at 1000°C for 1hr
- Aged for 250hr at 800°C
 - Polarization was constant 6omA/cm²
- Four conditions compared:
 - Aged dry air
 - Aged dry air cathodic polarization
 - Aged 3% H₂O anodic polarization
 - Aged 3% H₂O cathodic polarization

Data acquisition

- Our results (and conclusions) can only be so good as our inputs
 - We need good inputs! (GIGO)
- Important considerations:
 - Initial sample preparation (pre-FIB)
 - Sample preparation within the FIB/SEM
 - Slicing resolution (for fidelity of reconstruction)
 - Electron beam parameters image noise and resolution vs. data acquisition time
 - What is it we need to accentuate?

Pre-FIB sample prep

- 1. Vacuum impregnation of porous structure
- 2. Grinding/polishing to 1200 grit
- 3. Carbon coating and sample mounting

Instrumentation

- FEI Helios 650
 - Part of the Center for Nanoscale Science and Technology (CNST) user facility at NIST
 - Multichem, iFast Developer Kit, etc.
- Auto Slice and View version 1.2
- Avizo Fire

Experimental – Electron imaging challenges

- Very difficult to image using backscatter electrons
- YSZ and LSM are insulating at RT, causing significant charging artefacts
- CASINO (v2.48) simulations:
 - 10nm spot size
 - Normal incidence
 - 100k 500k electrons
 - LSM, YSZ and epoxy

In-lens BSE (5kV)

Experimental – Electron imaging (effect of V_{acc})

5kV – 25 pA

What type of contrast is really important?

Need to facilitate segmentation!

1kV – 25 pA

Image frame integration and longer dwell (6 μs) improve contrast between phases *TLD* (through the lens detector) in backscatter electron mode

625 V – 25 pA

Data acquisition – Optimized procedures

- Bulk trenching, ion beam normal to sample
- Automated recipe developed to fully automate (takes about 1 hour to complete)
 - Pt dep, slice thickness mills
 - C deposition, Fiducial mill
 - Bulk trenches (65 nA)
- Setup and ready to mill in about 1.5 hrs
 - Mostly automated, besides electron fiducial
- Some shadowing deeper into trench, but 20 nm slice thickness, ~ 30 μm slice width
 - Overnight run acquires about 5-6 μm of depth; stable enough to run longer

Experimental – post processing of data

- Post-processing done with mix of software:
 - Avizo Fire:
 - Non-local means filtering of data¹
 - Watershed segmentation algorithm²
 - ImageJ/Python
 - Intensity gradient correction
 - Fiducial tracking/slice thickness measurement

¹ Based on A. Buades et al. in 2005 IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., Vol. 2, p. 60. IEEE.
² L. Vincent and P. Soille, IEEE Trans. Pattern Anal. Mach. Intell., 13(6), 583 (1991).

Experimental – post processing of data

- Post-processing done with mix of software:
 - Avizo Fire:
 - Non-local means filtering of data¹
 - Watershed segmentation algorithm²
 - ImageJ/Python
 - Intensity gradient correction
 - Fiducial tracking/slice thickness measurement

NL-Means Filtering

¹Based on A. Buades *et al.* in *2005 IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.*, Vol. 2, p. 60. IEEE.
²L. Vincent and P. Soille, IEEE Trans. Pattern Anal. Mach. Intell., 13(6), 583 (1991).

Acquired Data

Average voxel size: X – 20.8 nm

Y = 20.0 nmY = 26.5 nmZ = 20.2 nm

Average acquisition time per sample: 15 hrs

Data shown has been processed to facilitate segmentation Air-aged LSM-YSZ cathode Slice: 0/233 Position: 0.000 μm HFW: 27.4 μm

H2O-cathodic LSM-YSZ cathode Slice: 0/606 Position: 0.000 µm HFW: 26.4 µm

Air-cathodic

Slice: 0/365

HFW: 23.5 µm

LSM-YSZ cathode

Position: 0.000 µm

Results – Phase fraction and surface quantification

- Overall porosity decreases upon exposure to H₂O
- Phase solid fractions remain similar to expected values (from source materials)
 Slight deviation for H₂O-cathodic

	Exp.YSZ	Exp. LSM	Obs. YSZ	Obs. LSM
Aged air	0.52	0.48	0.506	0.494
Air-cathodic			0.523	0.477
H ₂ O-anodic			0.512	0.488
H₂O-cathodic			0.591	0.409

Results – Tortuosity

- Tortuosity is comparison of:
 - $\tau = \frac{Geodesic \ distance}{Euclidean \ distance}$
- Geodesic distance calculated with "fast marching method"
 - scikit-fmm Python library

15

Results – Tortuosity

 Effective diffusion coefficient is dependent on volume fraction and tortuosity*:

$$D_{\rm eff} = D \left(\frac{V_p}{\tau}\right)$$

- V_p/τ relatively constant, except for YSZ in H₂O samples
- Lower D_{eff} expected in these samples

* CJ Gommes *et al*, AIChE Journal **55** (2009) p. 2000.

Triple phase boundary (L_{TPB}) determination

- Intersection of three phases is necessary for the oxygen reduction reaction to occur:
 - ORR: $\frac{1}{2}O_2 + 2e^- \leftrightarrow O^{2-}$
 - This quantity can be directly related to cell performance
- Within analysis volume, a phase and boundary site can be described as **active**, **inactive**, or **unknown**
- Labels depend on connection to edges
 - Unknown have at least 1 border with edges (dead-end)
 - Active have two borders across a dimension (transverse)
 - Inactive networks have no intersection with an edge (isolated)
- Collaboration with Scientific Applications and Visualization Group at NIST

Results – Triple phase boundaries

To be active, all three connected components of the TPB must be contiguous throughout the volume

(which requires a large enough sampling volume to be representative)

Results – Triple phase boundaries

- Total ρ_{TPB} relatively constant (except H₂O-anodic, which has low sampling volume)
- H₂O-cathodic has significant decrease in active TPB density, suggesting drop in active sites for ORR

Summary

Conclusions

- We have developed and refined methods using both Avizo Fire and external calculations to quantify 3D microstructure of solid oxide fuel cell cathodes
- At the conditions tested, subtle changes in microstructure occur; which agree with subtle changes in cell performance
- $\rho_{\text{TPB,active}}$ decreases when aged under H₂O contamination and cathodic polarization
- Segregation of La and Mn to YSZ grain boundaries in H₂O-cathodic (but not Sr)

Upcoming Work

- Analyze and quantify composition of segregation products using TEM/EELS
- Further correlation with EIS data from same samples
- Investigation of LSCF/GDC composite cathode degradation

Acknowledgements

THANK YOU

Questions and comments?

THE DEPARTMENT of MATERIALS SCIENCE AND ENGINEERING ²