

CHARACTERIZATION OF THE OXIDE-SEMICONDUCTOR INTERFACE IN 4H-SIC/SIO₂ Structures Using TEM and XPS^{*}

Joshua Taillon,¹ Karen Gaskell,² Gang Liu,³ Leonard Feldman,³ Sarit Dahr,⁴

Tsvetanka Zheleva,⁵ Aivars Lelis,⁵ and Lourdes Salamanca-Riba¹

M&M 2015, P08.5; Portland, OR Wed. August 5, 2015 Room D136, 2:00PM *Supported by ARL under contract no. W911NF-11-2-0044 and W911NF-07-2-0046, as well as NSF Graduate Research Fellowship Grant DGE 1322106 (J. Taillon)

¹ Materials Science and Engineering, University of Maryland College Park

² Chemistry and Biochemistry, University of Maryland College Park

³ Institute for Advanced Materials, Rutgers University

⁴ Department of Physics, Auburn University

⁵ U.S. Army Research Laboratory

Outline

- Motivation behind analytical microscopy of SiC microelectronics
 - Impacts of NO post-annealing
- TEM-EELS from a collection of SiC/SiO₂ interfaces
 - Previous findings related to the transition layer
 - HRTEM, hyperspectral imaging, machine learning techniques for signal deconvolution
 - Significant changes in interface character after NO-anneal
- Correlation with XPS results
 - What differences are observed with an NO-anneal?
- Conclusions: What's next?

Motivation and background

- SiC: Very promising for high temperature, high power, and high radiation environments
 - Limited by poor channel carrier mobility and reliability
 - Typical device μ_{FE} : 4H-SiC before NO anneal: < 10 $\frac{\text{cm}^2}{\text{V}\cdot\text{s}}$; after NO anneal: ~ 45 $\frac{\text{cm}^2}{\text{V}\cdot\text{s}}$; bulk value: ~ 1,000 $\frac{\text{cm}^2}{\text{V}\cdot\text{s}}$
 - Electrically active defects at the SiC/SiO₂ interface inhibit devices during channel inversion
 - Other defects significantly affect the reliability and stability of devices over time
- What is the true nature of the interface, and how do our processing techniques really affect it?
 - EELS experiments suggest distinct transition region^{1,2}
 - Other results (XPS, MEIS, etc.) suggest more abrupt transition ³⁻⁴
 - What is NO post oxidation annealing really changing about the interface structurally and chemically?

- ² Chang, K. C. et al. J. Appl. Phys. 97, 104920 (2005).
- ⁴ X. Zhu, et al., Appl. Phys. Lett., 97(7), 071908 (2010).

¹ J. Taillon, L. Salamanca-Riba, et al., J. Appl. Phys. 113, 044517 (2013).

³ H. Watanabe, et al., Appl. Phys. Lett., 99(2), 021907 (2011).

TEM-EELS EXPERIMENTS

EELS Spectrum Imaging

One spectrum per line

Si- $L_{2,3}$ chemical shift

- EELS fine structure (ELNES) reflects local unoccupied density of states
 - Semiconductor \rightarrow insulator
 - Edge onset → minimum energy needed to excite core shell e⁻
 - Band gap widens, core levels depressed relative to $\mathsf{E}_{\mathsf{F}}^1$
 - Charge transfer from $Si \rightarrow C/O$
 - Onset shifts to higher energy

¹ D. Muller, Ultramicroscopy **78**, 163 (1999).

Si- $L_{2,3}$ chemical shift – measuring W_{TL}

- Track inflection point of edge onset across interface¹
- Gradual and monotonic shift
 - Si bonding changes gradually and uniformly across the interface
- Measured using rise/fall time calculations typical in signal processing

¹ D. Muller, P. Batson, and J. Silcox, Physical Review B 58, 11970 (1998).

NO-anneal results (previous results)

- *w*_{TL} correlates inverse-linearly μ_{FE}
 - Also correlates with decreased trap density: John Rozen, *et al.* IEEE Trans. Elec. Dev. (2011).
- NO-anneal removes/passivates mobilitylimiting defects
 - Compositionally and electronically
- Conclusions:
 - *w*_{TL} decreases with increasing NO anneal time
 - New chemical shift of Si-L_{2,3} edge onset was most reliable method
 - No excess C on either side of interface

J. Taillon, L. Salamanca-Riba, et al., J. Appl. Phys. **113**, 044517 (2013).

Samples investigated – TEM/EELS

- 2 x 3 matrix aimed at comparing substrate orientation (and miscut) with processing conditions:
 - NO POA is for 2hr, all SiC substrates are n-type, SiO₂ ~60 nm thick

Sample Labels:	Only oxidized	NO Post- annealed	
Si-face on-axis	Si-O ₂ -0	Si-N-0	
Si-face miscut (4°)	Si-O ₂ -4	Si-N-4	
a-face on-axis	a-O ₂ -0	a-N-0	

HRTEM of Si-face and *a*-face with and without NO annealing

w_{TL} measurements

- Results from STEM EELS transition layer measurements show that w_{TL} values are similar
- w_{TL} in NO-annealed samples for these devices are actually slightly larger than the nonannealed
- a-face interfaces are the smallest, which does correspond with their higher mobilities (in NO)
 - 40 cm²/V s for Si-face
 - 85 cm²/V s for a-face

HyperSpy for analytical microscopy

http://hyperspy.org

- **Open source** hyperspectral analysis package for Python
 - GUI and/or web notebook (traceability!)
- Data-agnostic, but...
 - Specialized routines for EDS and EELS
- Easy access to PCA, ICA, and signal modeling

Decomposition analysis

- Machine learning for hyperspectral decomposition
 - How to tease out convoluted and complex signals
 - Use redundancy of information in spatial dimensions to learn more about differences in the signal dimension(s)
- Non-negative matrix factorization
 - Finding simpler descriptive basis vectors of overall data; one component per "source"

Adapted from: https://upload.wikimedia.org/wikipedia/commons/f/f9/NMF.png

Non-negative components - NMF - Train time 0.2s

Example applied to Olivetti faces

What features are found most often in the training set?

Interface components at NO-annealed interfaces

 Simple sum improves S/N, but cannot detect faint or overlapping signals

Interface components at NO-annealed interfaces

- Signal decomposition (NMF) is much more powerful
- Significant detection of unique orthogonal component at interface
- New component that is distinct from SiO₂and SiC was observed
- Non-linear combination of signals!

What does it mean?

- Si₃N₄ theory and experiment (Skiff et al.)
 - Calculated ΔE between doublet peaks 3.4 eV compared to our 2.08 eV
- Not SiO₂ or SiC
 - Those were also identified, and peak positions do not match
- Effect of N-bonding
 - Si-C-N-O bonding configurations?
 - Likely that this is evidence of N-bonding at interface
 - DFT modeling will reveal further details

Skiff, W. M., et al., J. Appl. Phys. 62, 2439–2449 (1987).

XPS DEPTH PROFILING

XPS N 1s

XPS N 1s

	Elemental composition (peak area integration)						
	Measurement	C 1s %	N 1s %	O 1s %	Si 2p %		
Completely etched	N1 - normal	40.95	1.67	9.56	47.82		
	N1-40°	41.43	2.66 👞	16.44	39.47		
	N1 – 20°	41.20	2.73	20 59	35.49		
2 – 4 nm oxide layers	N2 – normal	29.92	1.01	21.80	47.28		
	N2 – 40°	33.59	1.37 🔸	<u>2</u> 9.46	35.58		
	N2 – 20°	36.28	1.45	33.57	28.70		

- N content decreases when thick oxide is present, and is still present after all original oxide is etched off
- N is localized in SiC near interface (in agreement with recent findings from Rutgers¹)

- Results are consistent with TL observed by EELS
 - Further corroboration of N-bonding hypothesis of what is being observed at the interface

¹Y. Xu, L. C. Feldman, et al., J. Appl. Phys., 115(3), 033502 (2014).

Summary

- The shift of the Si-L_{2,3} edge is a good indicator of the width of the transition region in 4H SiC/SiO₂.
 - Newer devices do not follow previously observed trend
 - Measuring interface width does not reveal what is happening inside
- Decomposition of Si-L_{2,3} EELS edge reveals a chemically/electrically distinct interface state
 - Likely significant impacts on mobility and performance
 - Spatial distribution matches measurements of w_{TL}
- a-face samples have narrower transition region than Si-face.
- XPS indicates Si₃N₄-like N bonding at the interface, with N incorporated primarily at interface

Future work

- Further analysis of EELS signals (O-K, C-K edges and low-loss region) at the interface
- Theoretical modeling of DOS for explanation
- Exploration of lattice strain in different substrate orientations

Acknowledgements

- ARL Contracts W911NF-11-2-0044 and W911NF-07-2-0046.
- NSF Graduate Research Fellowship Grant DGE 1322106
- AIMLab at UMD supported by NSF
- Dr. Joshua Schumacher at NIST

HyperSpy developers:

- Francisco de la Peña
- Pierre Burdet
- Tomas Ostasevicius
- Vidar Tonaas Fauske
- And many others...

THANK YOU

Questions/comments: jtaillon@umd.edu or riba@umd.edu