

THREE DIMENSIONAL MICROSTRUCTURAL CHARACTERIZATION OF CATHODE DEGRADATION IN SOFCS USING FOCUSED ION BEAM AND SEM

Joshua Taillon, Christopher Pellegrinelli, Yilin Huang, Eric Wachsman, and Lourdes Salamanca-Riba University of Maryland, College Park

*Supported by DOE-SECA under contract no. DEFE0009084 and NSF GRFP grant no. DGE 1322106.

2015 Microscopy and Microanalysis Meeting Thursday, August 6, 2015 – 2:30 PM Session A04.3, Room B117

Introduction to Solid oxide fuel cells

- Solid oxide fu
 - Low cost, flex
- Problems?
 - High operatir
 - Cathode r
 - H₂O, CO₂,
 - Adverse e
- What is primary cause
 - Microstructure!
 - Previous work:
 - Quantification in the FIB/SEM:
 - J. Wilson, S. Barnett, Electrochem. Commun., 11(5), 1052 (2009).
 - D. Gostovic, E. Wachsman, et al., J. Am. Ceram. Soc., 94(2), 620 (2011).

Our task:

Use the FIB/SEM to characterize microstructural changes as cathode degradation occurs, and relate these changes to those in cell performance.

Our goal:

Better understanding of the fundamental mechanisms behind cathode degradation.

3

Outline

Data acquisition

Sample prep and imaging conditions

Data processing

• Filters, artefact correction, and segmentation

Quantification strategies

- Tortuosity
- Triple phase boundary
- Electrochemical activity determination

Experimental - Button cell testing

Cross-section view

- Symmetric cathode cells
 - 8-YSZ electrolyte
 - 50 wt. % LSM/YSZ cathode paste
- Sintered at 1000°C for 1hr
- Aged for 250hr at 800°C
 - Polarization was constant 60mA/cm²
- Four conditions compared:
 - Aged dry air
 - Aged dry air cathodic polarization
 - Aged 3% H₂O anodic polarization
 - Aged 3% H₂O cathodic polarization

5

Data acquisition

• Our results (and conclusions) can only be so good as our inputs

- We need good inputs! (GIGO)
- Important considerations:
 - Initial sample preparation (pre-FIB)
 - Sample preparation within the FIB/SEM
 - Slicing resolution (for fidelity of reconstruction)
 - Electron beam parameters image noise and resolution vs. data acquisition time
 - What is it we need to accentuate?

Pre-FIB sample prep

- 1. Vacuum impregnation of porous structure
- 2. Grinding/polishing to 1200 grit
- 3. Carbon coating and sample mounting

Instrumentation

- FEI Helios 650
 - Part of the Center for Nanoscale Science and Technology (CNST) user facility at NIST
 - Multichem, iFast Developer Kit, etc.
- Auto Slice and View version 1.2
- Avizo Fire + personal Python code
- Tescan Gaia (+ Xeia) at UMD
 - Soon!

FEI Helios 650 at NIST (CNST)

Tescan Gaia at UMD AIMLab

Experimental – Electron imaging (detector positioning)

FEI Helios 660 "In-column" detector (3 kV)

LSM/YSZ

Zeiss Crossbeam 540 "EsB" detector (1.5kV)

LSM/YSZ

Tescan Xeia "In-beam BE" detector (5kV)

LSCF/GDC

- Positioning of detector and/or energy filtering
 - Careful selection of contrast mechanism
- For SOFC ceramics:
 - Low voltage, elastically scattered BSE provide best contrast between phases

Experimental – post processing of data

- Post-processing done with mix of software:
 - Avizo Fire:
 - Non-local means filtering of data¹ (also Perona–Malik diffusion filter)
 - Watershed segmentation algorithm²
 - ImageJ/Python
 - Intensity gradient correction
 - Fiducial tracking/slice thickness measurement

¹ Based on A. Buades *et al.* in *2005 IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.*, Vol. 2, p. 60. IEEE.

² L. Vincent and P. Soille, IEEE Trans. Pattern Anal. Mach. Intell., 13(6), 583 (1991).

Results – Surface generation

Results – Phase fraction and surface quantification

- Overall porosity decreases upon exposure to H_2O
- Phase solid fractions remain similar to expected values (from source materials)
 - Except for *H*₂*O*-*cathodic*
 - Will impact diffusivity estimates

	Exp. YSZ	Exp. LSM	Obs. YSZ	Obs. LSM
Aged air	0.52	0.48	0.51	0.49
Air-cathodic			0.52	0.48
H ₂ O-anodic			0.51	0.49
H ₂ O-cathodic			0.59	0.41

Results – Tortuosity

• Tortuosity is comparison of:

 $\tau = \lim_{L_G \to \infty} \left(\frac{Geodesic \ distance}{Euclidean \ distance} \right)$

Clennell, M. B. Geol. Soc. London. 122, 299–344 (1997).

- Geodesic distance calculated with "fast marching method"
 - scikit-fmm Python library

Results – Tortuosity

 Effective diffusion coefficient is dependent on volume fraction and tortuosity^{*}:

$$D_{\rm eff} = D \left(\frac{V_p}{\tau}\right)$$

- V_p/τ relatively constant, except slightly larger for YSZ in H₂O samples
- Agrees with slight performance enhancement

* CJ Gommes *et al,* AIChE Journal **55** (2009) p. 2000.

Results – Phase percolation

- Comparison of longest section of each phase to overall network
 - Used 5 longest components
- Result:
 - YSZ and pore completely interconnected
 - LSM is limiting transport

Triple phase boundary (L_{TPB}) determination

- Intersection of three phases is necessary for the oxygen reduction reaction to occur:
 - ORR: $\frac{1}{2}O_2 + 2e^- \leftrightarrow O^{2-}$
 - This quantity can be directly related to cell performance
- Within analysis volume, a phase and boundary site can be described as **active**, **inactive**, or **unknown**
- Labels depend on connection to edges
 - Unknown have at least 1 border with edges (dead-end)
 - Active have two borders across a dimension (transverse)
 - Inactive networks have no intersection with an edge (isolated)
- Collaboration with Scientific Applications and Visualization Group at NIST
 - Implemented edge-counting more accurate than morphological expansion (current trend in literature)

15

Results – Triple phase boundaries

- Total ρ_{TPB} relatively constant (except H₂O-anodic, which has low sampling volume)
- H₂O-cathodic has significant decrease in active TPB density, suggesting drop in active sites for ORR

Results – Impact of aspect ratio?

- H₂O Cathodic has less active TPB
 - Real result, or artefact of measurement?
 - Our classification depends on analysis of volume boundaries

Summary

Conclusions

- We have developed and refined methods using both Avizo Fire and external calculations to quantify 3D microstructure of solid oxide fuel cell cathodes
- At the conditions tested, subtle changes in microstructure occur; which agree with subtle changes in cell performance
- $\rho_{\text{TPB,active}}$ decreases when aged under H₂O contamination and cathodic polarization
- Segregation of La and Mn to YSZ grain boundaries in H₂O-cathodic (but not Sr)

Upcoming Work

- Analyze and quantify composition of segregation products using TEM/EELS
- Further correlation with EIS data from same samples
- Investigation of LSCF/GDC composite cathode degradation

Acknowledgements

THANK YOU

Questions and comments?

<u>Email:</u> jtaillon@umd.edu *and/or* riba@umd.edu

THE DEPARTMENT of MATERIALS SCIENCE AND ENGINEERING ¹⁹