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Outline

- Motivation behind analytical microscopy of SiC microelectronics
 Impacts of NO post-annealing

 TEM-EELS from a collection of SiC/SiO, interfaces

« Previous findings related to the transition layer
- HRTEM, hyperspectral imaging, machine learning techniques for signal deconvolution
- Significant changes in interface character after NO-anneal

« Correlation with XPS results
- What differences are observed with an NO-anneal?

» Conclusions: What’s next?
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Motivation and background

« SiC: Very promising for high temperature, high power,
and high radiation environments
- Limited by poor channel carrier mobility and reliability
+ Typical device pgg: 4H-SiC before NO anneal: < 10 % after NO anneal: ~ 45 %; bulk value: ~ 1,000 Cv—m:

- Electrically active defects at the SiC/SiO, interface inhibit devices during channel inversion
- Other defects significantly affect the reliability and stability of devices over time

- What is the true nature of the interface, and how do our processing techniques
really affect it?

 EELS experiments suggest distinct transition region'-?
+ Other results (XPS, MEIS, etc.) suggest more abrupt transition 34
« What is NO post oxidation annealing really changing about the interface structurally and chemically?

1 ). Taillon, L. Salamanca-Riba, et al., J. Appl. Phys. 113, 044517 (2013). 2 Chang, K. C. etal. ). Appl. Phys. 97, 104920 (2005).
3 H. Watanabe, et al., Appl. Phys. Lett., 99(2), 021907 (2011). 4 X.Zhu, et al., Appl. Phys. Lett., 97(7), 071908 (2010).
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TEM-EELS EXPERIMENTS
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EELS Spectrum Imaging

/ One spectrum per line

.....

Si-L, 5

e 0 »
3 J;_ 30 a5 1

HAADF Survey Image Spectrum Image Lines
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Si-L, 3 chemical shift

- EELS fine structure (ELNES) reflects local
unoccupied density of states

« Semiconductor — insulator

- Edge onset = minimum energy needed to
excite core shell e-

- Band gap widens, core levels depressed
relative to E!

EELS Signal [e" counts]

Fl el « Charge transfer from Si —» C/O
100 130 135

105

11 | 11 1 1 | 11 1 | | 11
110 15 120
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125

* Onset shifts to higher energy

1 D. Muller, Ultramicroscopy 78, 163 (1999).
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Si-L, 3 chemical shift — measuring wy,

- Track inflection point of edge onset
across interface?
« Gradual and monotonic shift

- Si bonding changes gradually and
uniformly across the interface

« Measured using rise/fall time calculations
typical in signal processing

1 D. Muller, P. Batson, and J. Silcox, Physical Review B 58, 11970 (1998).
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NO-anneal results (previous results)

* wq_correlates inverse-linearly p, NO anneal time
Also correlates with decreased trap density: < E—
John Rozen, et al. IEEE Trans. Elec. Dev. (2011). 50 |- +
. e
« NO-anneal removes/passivates mobility- 2 o 1Nk
limiting defects $ 5
« Compositionally and electronicall 3
P y y 3 +
w20
- Conclusions: ]
. . 0 10 |- .
* wy_decreases with increasing NO anneal N
time O o K
* New chemical shift of Si-L, ; edge onset was ¢ g * Y ‘:'nm, 4 % .
most reliable method %

* No excess C on either side of interface
J. Taillon, L. Salamanca-Riba, et al., J. Appl. Phys. 113,

044517 (2013).
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Samples investigated — TEM/EELS

*After Dhar, S. PhD Thesis, Lol i
Vanderbilt University (2005). (0001) §|-face
- 2 x 3 matrix aimed at comparing substrate 100% Statoms ag
orientation (and miscut) with processing /
conditions: a; < = =
* NO POA is for 2hr, all SiC substrates are n-type, SiO, ~60 nm T ' \
thick N
a
- NO Post- "~ aface
Sample Labels: Only oxidized
annealed | // :g:g’
_1120]
Si-face on-axis Si-0,-0 Si-N-0 .
\
<) P
Si-face miscut (4°) Si-0,-4 Si-N-4 T P
a-face on-axis a-0,-0 a-N-0 (0007) C-face J J
100% C atoms -
[0007 ]
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HRTEM of Si-face and a-face with and without NO annealing

Without NO-anneal

With 2hr NO-anneal
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Wt measurements

8 * Results from STEM EELS
mEm Original NO Data O DxidNon transition layer measurements
mmm 2hr NO POA
7 show that wy values are
3 similar
Why so

5 different? *  wy in NO-annealed samples
E for these devices are actually
%“ slightly larger than the non-
E - annealed

2 * a-faceinterfaces are the

smallest, which does
1 correspond with their higher
i - mobilities (in NO)
120 240 SiC (4°) SiC (0°) SiC a-face  (001) Si e 40 cm?/V s for Si-face
NO anneal time (mm.) Substrate O 85 sz/V s for a-face
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NEW ANALYSIS TECHNIQUE

Hyperspectral signal decomposition — machine learning
Si-L, 3
Low-loss EELS
Phosphosilicate glass samples
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HyperSpy for analytical microscopy http://hyperspy.org

ROT 10,5281/zen000.16850

* Open source
hyperspectral analysis
package for Python
* GUI and/or web

notebook (traceability!)

* Data-agnostic, but...
» Specialized routines for
EDS and EELS

* Easy access to PCA, ICA,
and signal modeling

THE DEPARTMENT of MATERIALS SCIENCE AND ENGINEERING



https://zenodo.org/record/16850
https://zenodo.org/record/16850
http://hyperspy.org/

August 13, 2015 - Joshua Taillon/jtaillon@umd.edu {;? A JAMES CLARK
il = WEHAL LD BAL TR st

Lourdes Salamanca-Riba/riba@umd.edu

Decomposition analysis

« Machine learning for hyperspectral decomposition
« How to tease out convoluted and complex signals

 Use redundancy of information in spatial dimensions
to learn more about differences in the signal
dimension(s)

« Used in EEG, audio processing, fMRI, etc.
v

« Non-negative matrix factorization and Example

Blind source separation applied to
- Finding simpler descriptive basis vectors of overall lhezin gz

[ 3
. “ ” ™ .
data, O{}e Component per ‘source R
W H are found

the training
set?

most often in
x }

Adapted from: https://upload.wikimedia.org/wikipedia/commons/f/f9/NMF.png
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Decomposition of Si-L, ,

THE DEPARTMENT of MATERIALS SCIENCE AND ENGINEERING



August 13, 2015 - Joshua Taillon/jtaillon@umd.edu ("’p AL JAMES CLARK
‘,',.J Jo ML BRI

Lourdes Salamanca-Riba/riba@umd.edu 2

Interface components at NO-annealed interfaces

Linear >
combination, /
or something

= more?

* Simple sum improves S/N,
but cannot detect faint or
overlapping signals

— SIC
=~ Interface
— SO

: - T
20 140 160 180
Energy loss (eV)
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Interface components at NO-annealed interfaces

A Pt

. ‘A —— Background spectrum /
(NMF) is much more i — Si0; spectrum
pOWEfol d o = |nterface spectrum

b — SiC spectrum \
. g
* New component that is M\

distinct from SiO,and SiC i ) &WW
was observed |

Non-linear combination of
signals!

* Signal decomposition

e  Significant detection of
unigue orthogonal
component at interface

80 100 120 140 160 180
Energy loss (eV)

THE DEPARTMENT of MATERIALS SCIENCE AND ENGINEERING




August 13, 2015 - Joshua Taillon/jtaillon@umd.edu e A AL JAMES CLARK
‘,',.J Jo ML BRI

Lourdes Salamanca-Riba/riba@umd.edu 2

Interface components at NO-annealed interfaces

+ Signal decomposition S : 120
(NMF) is much more Component average width: o
powerful st “wp " = 1.97 + 0.25nm |

e  Significant detection of
unigue orthogonal .
component at interface R Measured from chem. shift: |... L

| wy, =2.11 + 0.11nm e |

* New component that is ]
distinct from SiO,and SiC P 1
was observed i —si=) Good agreement! wd B

Non-linear combination of ™ ) g I
signals! A% : "

80 100 120 140 160 180
Energy loss (eV)
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O, oxidation +
NO POA

Face / Treatment

‘ Si-face, NO-annealed,
Si-face 4° miscut | 4° miscut

(Si-X-4)

Si—face, O; oxidized,

Si-face, NO-annealed,
4° miscut

4° miscut

-
L
2
12
e
w
]
£

Intensity (a.u.)

a—face, O, oxidized a-face, NO-annealed

90 100 110 120 130 140 150 ) 120 130 140 150 160 170
Energy loss (eV) Energy loss (eV)
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What does it mean?

* Si;N, theory and experiment (Skiff et al.)
*  Calculated AE between doublet peaks 3.4 eV
compared to our 2.08 eV

* NotSiO, or SiC
* Those were also identified, and peak
positions do not match

* Effect of N-bonding
*  Si-C-N-O bonding configurations?
*  Likely that this is evidence of N-bonding at
interface
*  DFT modeling will reveal further details

—— SiiNs Exp. (Skiff)
- SisNs Theory (Skiff)
——  Qur Si-N-4 doublet

100 120 140 160 180
Energy loss (eV)

Skiff, W. M., et al., J. Appl. Phys. 62, 2439-2449 (1987).
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Decomposition of Low-loss EELS signal
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Low-loss EELS

- Reveals information originating
from inelastic scattering by outer
shell electrons

« Plasmon interactions

+ (Collective oscillations of electrons
within the sample: bulk, surface,
interface, etc.)

Energy related to valence e density

Width is indicative of the damping effect
of single electron transitions

Information about dielectric response
Can be used for spectral “fingerprinting”

30000

25000

20000

15000

Intensity

10000

5000

O A AL JAMES CLARK
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Si-face, A P_Iasmon peak
4° miscut \! =¥ S|_C
NO-anneal / — Si0,
/ SiC
A\,
SiO
- g 2
10 15 20 25 30 35

Energy loss (eV)
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O, oxidation —decomposition loadings

a—face O, Si—face O, 0° Si—face O, 4°
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Decomposed plasmon spectra at SiC/SiO, interface - Loadings

NO post-anneal — decomposition loadings

a-face NO
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Low-loss Interface component - comparison

S

' .\ ' T,
' ' PR T R b | ¢ v
N s AL LRI R L S .
/M\ J
»

il i

w‘l
J \ ™~ \ J
//MM \V/V\\M / - N \L“W
\ | Wh R
! = = = = %mm-m | = - = ‘I'J = = w V*“..V.L N‘M\’
0 S 20 25 30 5 40 ~ 15 25 30 a5 40
Energy loss (eV)

10 20 23
Energy loss (eV)

O, oxidation NO post-anneal (2hr)
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Low-loss decomposition results

a—face O,
* Results:

+ Interface components observed for all samples
investigated

« Specific component shapes appear very similar
* Limited NO impact in this range of spectrum

- Finite transition layer regardless of
interface/treatment

* “wy” from low-loss component ~ 2.2nm
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Decomposition of Phosphosilicate glass (PSG)
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Phosphorus PSG process — decomposition analysis

« 2013 results:
- Si-face and a-face PSG

a-face PSG sample (STEM data):

* Wy on same order as NO-anneal STEM signal during acg
- Difficult to see P on top of Si signal:

STEM signal during acq

Initially thought
contamination...

0 g g . £
@ 9
a g ¥ .
£ H x -
£ £ ~ -
§ - * e ...but maybe
& e there‘s more.
= i "
§ H PSG from Si-face e _’. g
............ } e PSG from a-face 5 il ol
------- SI0. Referance 10 nm 10 nm - 3
....................................... P Reference — . - k\&
I A L A xX axis (nm) X axis (nm)
20 120 150 180
Energy (eV) as acquired enhanced contrast
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PSG decomposition results

Si-face PSG STEM and EELS:

sadings

— SHC
— 5104 ~like
- QOxide clusters

Independent component intensity (a.u.)

90 100 110 120 130
Energy loss (eV)
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PSG decomposition results

a-face PSG STEM and EELS: Indepenent corpone

Clusters in oxide

A Al VA GOV VR
'\L : - /\‘,\fﬁ, \-._j J\/‘ WA\ o e
STEM signal during acq. : o ‘

f
"' A fﬁ'./ . — fv_- e
v — Qackgrouna
3 | l\/\j — Clusters in adde
z o I".-' ~
z i) i W
E s : :
= - -
w 5
g <] .
™ - : g
3: ™~ r‘m\\ LN
j/,N -J/\"W“ ‘\'\M‘w\
IS n
'f' : “v"\«/‘v-v\_\‘,\
/ -\\f\/'*- A
J A\
10 nm Iy

v v 4— '
130 140 150 190
Energy loss (V)
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PSG decomposition results

Favron et al., Nature Materials, 14, 826—-832 (2015)

d _fa ce PSG STE M an d E E LS . ""-"'3'=’“"'.‘_:';'" companent

Pl A A SN\ VA GOV 4 WOV A
. 2 VA V i
STEM signal during acq. ] o ‘

y axis (nm)

10 nm

P W LK § ) - — - —— >y v
- o v 120 130 140 15¢ 160 17
x axis (nm) 2 30 50 60  1m

Energy (eV) )
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PSG decomposition results

- Results: a-face PSG sample (STEM data):

+ “Clusters” observed in STEM imaging are not
contamination or sample preparation artifacts, as
initially thought

P is not evenly distributed throughout the PSG

- Rather, appears to be P inclusions within SiO,

STEM signal during acq STEM signal during acq

« Are newer PSG samples similar?
* Further analysis of PSG process (see Sarit’s talk)

-
=
2
3

10 nm

|

X axis (nm) xX axis (nmy)

as acquired enhanced contrast
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XPS DEPTH PROFILING
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« 4 components found in
constrained fit:

o o
i Normal angle iy 40° angle & 20° angle
.
- 2007 =~ 70,
2300 Name Pos FWHM LSK  %Area Name Por FWHM LS %Aren Name  Pot
Nls 39738 0950 1904 Nla 39743 0950 Nls 39740 0950
03 N1 40128 1580 40133 1580 651 1 40130 1580
Nis 39958 1580 1803 Nis 39963 1580 N1 39960 1580
w004 Nlis 39788 1580 1903 Nls 39793 1580 o Nls 39790 1580
o 1% 160 s
-] o3 ot
1804 170
170 104 )
1604 N 1 130, P
; nemael /N 120; mf_"/
140 wﬁ#—k—-—/ 40, ;
T T T T [ N A ey v = I
41 408 404 400 iee 412 400 404 400 396 412 401 404 <400 98
Bmding Energy (sV) Dinding Rosrgy (8V) Binding Boergy (o\V)
od_Ovma:N 18 #d_50vma: N 1a/8 #4_70.vms : N 15/60
190_ 10! 10} 10!
] Nume Por FWHM LSE  %Ares o] Nume Por FWHM LSK  %Are 105] Name Pos FWHM LSE “%Are
g0 N1in 39745 0950 OL(30) 54.51 Nls 39738 0950 GL(¥) 5030 Nls 39743 0950 GL(30) 4136
i 40135 1580 GL(RO) 377 e 40128 1580 G 516 100, 40133 1580 GL(Jp 648
Nin 319965 1580 OL(¥0) 964 T N1z 30058 1.580 1232 4 Nls 39063 1580 OGL(P) 1968
170] Nis 39795 1580 GL{N) 3207 Nis 30788 1580 3222 i 39703 1580 GL(BY) 3248
1 160 a
@ 160 P 2 o
d 1150,
# 85
140 140
£0_|
uo: NZ o] |
i W TN, )
130] [ i
L At e ey A e e
a2 08 404 400 396 LN a2 08 404 0o 396 a1z 408 404 ‘ 396

Binding Evergy (¢V)

Bioding Evergy («V)

Buding Evergy (¢V)

 Primary peak is consistent
with silicon nitride-like
bonding

.

Other peaks likely to be
successively more oxygen
bonding and/or carbon
bonding

- Additional component at
higher energy compared to
previous results?!

Y. Xu, L. C. Feldman, et al., J. Appl. Phys., 115(3), 033502 (2014).
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XPS N 1s

Elemental composition (peak area integration)

* N content decreases

Measurement Cls% N 1s % 01s% Si 2p % . . .
Completely N1 - normal 40.95 1.67 9.56 47.82 when thick oxide is
N1-40° 41.43 2.66 16.44 39.47 present, and is still
etched N1-20° 41.20 2.73 \&59 35.49 present after all

2_4 N2 - normal 29.92 1.01 21.80 47.28 original oxide is

—4nm

o N2 - 40° 33.59 137 %\ etched off

oxide layers - . e e
N2 - 20 36.28 1.45 S i  Nis localized in SiC

near interface (in

agreement with

recent findings from

e Results are consistent with TL observed by EELS Rutgers?)
* Further corroboration of N-bonding hypothesis of
what is being observed at the interface

¥, Xu, L. C. Feldman, et al., J. Appl. Phys., 115(3), 033502 (2014).
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XPS Elemental Ratios

- Looking at absolute
elemental ratios is not All Si-2p
always accurate/ideal SiC sio,
« Hydrocarbon contamination
Interface

« Normalizing by appropriate
signal

- Example:
« Si 2p quantification

108 106 104 102 100 98 96
Binding energy (V)
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XPS Elemental Ratios 2.4 x10% em?

20 O, -etched NO-etched 40 O, -etched NO-etched 0.30 NO-etched
- 35
2 0.25
g o 15 3.0 "
2 9 S 2020
s o g 25 T
ST &0 x20 & 0.15
T X 9 D45 2 010
= os ol Jl | wll
[
0.0 0.0 ol = 0.00 N,g.(
20 0, -oxide NO-oxide 4.0 0O, —oxide NO-oxide 0.30 NO-oxide - 40
a : . ;
35 . 3nm - 20
E 5% 2 6nm 3nm 0.25
o 8 2,5 20.20
2 © g “ [
X ® 1.0 ®20 X 0.15
9 L) D45 0
= Il Al dlild:
3 05 :
0.0 e l 0.0 0.00 il
SiC+int. SiC All SiC +int. SiC All Ox. +int. Ox Ox. +int. Ox. All Interface All
Denominator Denominator Denomlnator Denominator Denominator
Best normalization by Si in SiC O ratio = 1.5... lower than expected N as expected

With proper normalization, XPS reveals approximately expected stoichiometry
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Summary

« The shift of the Si-L, ; edge is a good indicator of the width of the transition region in 4H SiC/SiO,.
- Newer devices do not follow previously observed trend
- Measuring interface width does not reveal what is happening inside
- Decomposition of Si-L, ; EELS edge reveals a chemically/electrically distinct interface state
« Likely significant impacts on mobility and performance
- Spatial distribution matches measurements of wy

- Decomposition of low-loss EELS shows same-sized interface component
- Not dependent on NO anneal

XPS indicates Si;N,-like N bonding at the interface, with N incorporated primarily at interface
PSG passivation does not cause a uniform PSG dielectric (clusters of P within oxide)

Future work

« Further analysis of EELS signals (O-K and C-K edges) at the interface
 Theoretical modeling of DOS for explanation
- Exploration of lattice strain in different substrate orientations (CBED, Geo. Phase Analysis)
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THANK YOU

Questions/comments/discussion?
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