CHARACTERIZATION OF THE OXIDE-SEMICONDUCTOR INTERFACE IN 4H-SIC/SIO₂ STRUCTURES USING TEM AND XPS*

Joshua Taillon,¹ Joe Ivanov,¹ Karen Gaskell,² Gang Liu,³ Leonard Feldman,³ Sarit Dahr,⁴ Tsvetanka Zheleva,⁵ Aivars Lelis,⁵ and Lourdes Salamanca-Riba¹

10th Annual SiC MOS Program Review, College Park, MD Thurs. August 13, 2015 Prince George's Room, 3:05PM *Supported by ARL under contract no. W911NF-11-2-0044 and W911NF-07-2-0046, as well as NSF Graduate Research Fellowship Grant DGE 1322106 (J. Taillon)

- ¹ Materials Science and Engineering, University of Maryland College Park
- ² Chemistry and Biochemistry, University of Maryland College Park
- ³ Institute for Advanced Materials, Rutgers University
- ⁴ Department of Physics, Auburn University
- ⁵ U.S. Army Research Laboratory

MATERIALS SCIENCE AND ENGINEERING

Outline

- Motivation behind analytical microscopy of SiC microelectronics
 - Impacts of NO post-annealing
- TEM-EELS from a collection of SiC/SiO₂ interfaces
 - Previous findings related to the transition layer
 - HRTEM, hyperspectral imaging, machine learning techniques for signal deconvolution
 - Significant changes in interface character after NO-anneal
- Correlation with XPS results
 - What differences are observed with an NO-anneal?
- Conclusions: What's next?

Motivation and background

- SiC: Very promising for high temperature, high power, and high radiation environments
 - Limited by poor channel carrier mobility and reliability
 - Typical device μ_{FE} : 4H-SiC before NO anneal: < $10 \, \frac{\mathrm{cm^2}}{\mathrm{V \cdot s}}$; after NO anneal: ~ $45 \, \frac{\mathrm{cm^2}}{\mathrm{V \cdot s}}$; bulk value: ~ $1,000 \, \frac{\mathrm{cm^2}}{\mathrm{V \cdot s}}$
 - Electrically active defects at the SiC/SiO₂ interface inhibit devices during channel inversion
 - · Other defects significantly affect the reliability and stability of devices over time
- What is the true nature of the interface, and how do our processing techniques really affect it?
 - EELS experiments suggest distinct transition region^{1,2}
 - Other results (XPS, MEIS, etc.) suggest more abrupt transition ³⁻⁴
 - What is NO post oxidation annealing really changing about the interface structurally and chemically?

¹ J. Taillon, L. Salamanca-Riba, et al., J. Appl. Phys. 113, 044517 (2013).

³ H. Watanabe, et al., Appl. Phys. Lett., 99(2), 021907 (2011).

² Chang, K. C. et al. J. Appl. Phys. 97, 104920 (2005).

⁴ X. Zhu, et al., Appl. Phys. Lett., 97(7), 071908 (2010).

TEM-EELS EXPERIMENTS

EELS Spectrum Imaging

Si-L_{2,3} chemical shift

- EELS fine structure (ELNES) reflects local unoccupied density of states
 - Semiconductor → insulator
 - Edge onset → minimum energy needed to excite core shell e⁻
 - Band gap widens, core levels depressed relative to E_F¹
 - Charge transfer from Si → C/O
 - Onset shifts to higher energy

¹ D. Muller, Ultramicroscopy **78**, 163 (1999).

Si- $L_{2,3}$ chemical shift – measuring W_{TL}

- Track inflection point of edge onset across interface¹
- Gradual and monotonic shift
 - Si bonding changes gradually and uniformly across the interface
- Measured using rise/fall time calculations typical in signal processing

¹ D. Muller, P. Batson, and J. Silcox, Physical Review B **58**, 11970 (1998).

NO-anneal results (previous results)

- w_{TL} correlates inverse-linearly μ_{FE}
 - Also correlates with decreased trap density:
 John Rozen, et al. IEEE Trans. Elec. Dev. (2011).
- NO-anneal removes/passivates mobilitylimiting defects
 - Compositionally and electronically
- Conclusions:
 - w_{TL} decreases with increasing NO anneal time
 - New chemical shift of Si-L_{2,3} edge onset was most reliable method
 - No excess C on either side of interface

J. Taillon, L. Salamanca-Riba, et al., J. Appl. Phys. **113**, 044517 (2013).

Samples investigated – TEM/EELS

- 2 x 3 matrix aimed at comparing substrate orientation (and miscut) with processing conditions:
 - NO POA is for 2hr, all SiC substrates are n-type, SiO₂ ~60 nm thick

Sample Labels:	Only oxidized	NO Post- annealed	
Si-face on-axis	Si-O ₂ -0	Si-N-0	
Si-face miscut (4°)	Si-O ₂ -4	Si-N-4	
a-face on-axis	a-O ₂ -0	a-N-0	

HRTEM of Si-face and α -face with and without NO annealing

THE DEPARTMENT of MATERIALS SCIENCE AND ENGINEERING

W_{TL} measurements

- Results from STEM EELS transition layer measurements show that w_{TL} values are similar
- w_{TL} in NO-annealed samples for these devices are actually slightly larger than the non-annealed
- a-face interfaces are the smallest, which does correspond with their higher mobilities (in NO)
 - 40 cm²/V s for Si-face
 - 85 cm²/V s for a-face

NEW ANALYSIS TECHNIQUE

Hyperspectral signal decomposition – machine learning

- Si-L_{2,3}
- Low-loss EELS
- Phosphosilicate glass samples

HyperSpy for analytical microscopy

http://hyperspy.org

DOI 10.5281/zenodo.16850

- Open source
 hyperspectral analysis
 package for Python
 - GUI and/or web notebook (traceability!)
- Data-agnostic, but...
 - Specialized routines for EDS and EELS
- Easy access to PCA, ICA, and signal modeling

Decomposition analysis

- Machine learning for hyperspectral decomposition
 - How to tease out convoluted and complex signals
 - Use redundancy of information in spatial dimensions to learn more about differences in the signal dimension(s)
 - Used in EEG, audio processing, fMRI, etc.
- Non-negative matrix factorization and Blind source separation
 - Finding simpler descriptive basis vectors of overall data; one component per "source"

Adapted from: https://upload.wikimedia.org/wikipedia/commons/f/f9/NMF.png

What features are found most often in the training set?

THE DEPARTMENT of MATERIALS SCIENCE AND ENGINEERING

Decomposition of Si-L_{2,3}

Interface components at NO-annealed interfaces

 Simple sum improves S/N, but cannot detect faint or overlapping signals

Interface components at NO-annealed interfaces

- Signal decomposition (NMF) is much more powerful
 - Significant detection of unique orthogonal component at interface
- New component that is distinct from SiO₂and SiC was observed
 - Non-linear combination of signals!

Interface components at NO-annealed interfaces

- Signal decomposition (NMF) is much more powerful
 - Significant detection of unique orthogonal component at interface
- New component that is distinct from SiO₂and SiC was observed
 - Non-linear combination of signals!

THE DEPARTMENT of MATERIALS SCIENCE AND ENGINEERING

What does it mean?

- Si₃N₄ theory and experiment (Skiff et al.)
 - Calculated ΔE between doublet peaks 3.4 eV compared to our 2.08 eV
- Not SiO₂ or SiC
 - Those were also identified, and peak positions do not match
- Effect of N-bonding
 - Si-C-N-O bonding configurations?
 - Likely that this is evidence of N-bonding at interface
 - DFT modeling will reveal further details

Skiff, W. M., et al., J. Appl. Phys. 62, 2439-2449 (1987).

Decomposition of Low-loss EELS signal

Low-loss EELS

- Reveals information originating from inelastic scattering by outer shell electrons
 - Plasmon interactions
 - (Collective oscillations of electrons within the sample: bulk, surface, interface, etc.)
 - Energy related to valence e⁻ density
 - Width is indicative of the damping effect of single electron transitions
 - Information about dielectric response
 - Can be used for spectral "fingerprinting"

O₂ oxidation – decomposition loadings

NO post-anneal – decomposition loadings

Low-loss Interface component - comparison

O₂ oxidation

NO post-anneal (2hr)

Low-loss decomposition results

Results:

- Interface components observed for all samples investigated
- Specific component shapes appear very similar
 - Limited NO impact in this range of spectrum
- Finite transition layer regardless of interface/treatment
- "w_{TI}" from low-loss component ≈ 2.2nm

Decomposition of Phosphosilicate glass (PSG)

Phosphorus PSG process – decomposition analysis

- 2013 results:
 - Si-face and a-face PSG
 - w_{TI} on same order as NO-anneal
 - Difficult to see P on top of Si signal:

a-face PSG sample (STEM data):

Initially thought contamination...

...but maybe there's more.

enhanced contrast

Favron et al., Nature Materials, 14, 826-832 (2015)

Results:

- "Clusters" observed in STEM imaging are not contamination or sample preparation artifacts, as initially thought
- P is not evenly distributed throughout the PSG
- Rather, appears to be P inclusions within SiO₂
- Are newer PSG samples similar?
 - Further analysis of PSG process (see Sarit's talk)

a-face PSG sample (STEM data):

as acquired

enhanced contrast

XPS DEPTH PROFILING

XPS N 1s

XPS N 1s

Completely etched

2 – 4 nm oxide layers

Elemental composition (peak area integration)				
Measurement	C 1s %	N 1s %	O 1s %	Si 2p %
N1 - normal	40.95	1.67	9.56	47.82
N1 – 40°	41.43	2.66	16.44	39.47
N1 – 20°	41.20	2.73	20.59	35.49
N2 – normal	29.92	1.01	21.80	47.28
N2 – 40°	33.59	1.37	29.46	35.58
N2 – 20°	36.28	1 45	33 57	28.70

- Results are consistent with TL observed by EELS
 - Further corroboration of N-bonding hypothesis of what is being observed at the interface

- N content decreases when thick oxide is present, and is still present after all original oxide is etched off
- N is localized in SiC near interface (in agreement with recent findings from Rutgers¹)

¹Y. Xu, L. C. Feldman, et al., J. Appl. Phys., 115(3), 033502 (2014).

XPS Elemental Ratios

- Looking at absolute elemental ratios is not always accurate/ideal
 - Hydrocarbon contamination
 - Normalizing by appropriate signal
- Example:
 - Si 2p quantification

Thin "native"

With proper normalization, XPS reveals approximately expected stoichiometry

Summary

- The shift of the Si-L_{2.3} edge is a good indicator of the width of the transition region in 4H SiC/SiO₂.
 - · Newer devices do not follow previously observed trend
 - Measuring interface width does not reveal what is happening inside
- Decomposition of Si-L_{2,3} EELS edge reveals a chemically/electrically distinct interface state
 - · Likely significant impacts on mobility and performance
 - Spatial distribution matches measurements of w_{TI}
- Decomposition of low-loss EELS shows same-sized interface component
 - · Not dependent on NO anneal
- XPS indicates Si₃N₄-like N bonding at the interface, with N incorporated primarily at interface
- PSG passivation does not cause a uniform PSG dielectric (clusters of P within oxide)

Future work

- Further analysis of EELS signals (O-K and C-K edges) at the interface
- Theoretical modeling of DOS for explanation
- Exploration of lattice strain in different substrate orientations (CBED, Geo. Phase Analysis)

Acknowledgements

- ARL Contracts W911NF-11-2-0044 and W911NF-07-2-0046.
- NSF Graduate Research Fellowship Grant DGE 1322106
- AIMLab at UMD supported by NSF

HyperSpy developers:

- Francisco de la Peña
- Pierre Burdet
- Tomas Ostasevicius
- Vidar Tonaas Fauske
- And many others...

THANK YOU

Questions/comments/discussion?

THE DEPARTMENT of MATERIALS SCIENCE AND ENGINEERING