REVEALING HIDDEN INTERFACIAL STATES IN NO PASSIVATED 4H-SiC/SiO₂ STRUCTURES USING TEM-EELS AND XPS*

Joshua Taillon,¹ Karen Gaskell,² Sarit Dahr,³ Gang Liu,⁴ Leonard Feldman,⁴ Tsvetanka Zheleva,⁵ Aivars Lelis,⁵ and Lourdes Salamanca-Riba¹

2016 March APS, X7.03
Friday March 18, 2016 – Room 303
8:24AM – Baltimore, MD

*Supported by ARL under contract no. W911NF-11-2-0044 and W911NF-07-2-0046, as well as NSF Graduate Research Fellowship Grant DGE 1322106 (J. Taillon)

¹ Materials Science and Engineering, University of Maryland College Park
² Chemistry and Biochemistry, University of Maryland College Park
³ Department of Physics, Auburn University
⁴ Institute for Advanced Materials, Rutgers University
⁵ U.S. Army Research Laboratory
Motivation and background

- SiC: Very promising for high temperature, high power, and high radiation environments
 - NO post oxidation anneal (POA) drastically improves performance
Motivation and background

• SiC: Very promising for high temperature, high power, and high radiation environments
 • NO post oxidation anneal (POA) drastically improves performance

• Electrically active defects limit:
 • Carrier mobility
 • Reliability
 • Device stability
Motivation and background

• SiC: Very promising for high temperature, high power, and high radiation environments
 • NO post oxidation anneal (POA) drastically improves performance

• Electrically active defects limit:
 • Carrier mobility
 • Reliability
 • Device stability

• What is the true nature of the interface, and how do our processing techniques really affect it?
 • Some work indicates a distinct transition region (EELS)1,2
 • Others suggest abrupt transition (XPS, MEIS, etc.)$^{3−4}$

TEM-EELS EXPERIMENTS
Electron Energy Loss Spectroscopy (EELS)

- E-beam has many interactions with specimen:

- EELS is measurement of the energy lost when an electron interacts with the sample:

EELS Spectrum Imaging

HAADF Survey Image

SiC

SiO$_2$

10 nm
EELS Spectrum Imaging

HAADF Survey Image

SiC

SiO$_2$

EELS Spectrum Image

Simultaneous HAADF Signal

SiC

SiO$_2$
EELS Spectrum Imaging

HAADF Survey Image

SiC

SiO₂

Simultaneous HAADF Signal

EELS Spectrum Image

SiC

SiO₂
EELS Spectrum Imaging

HAADF Survey Image

SiC

SiO₂

10 nm

EELS Spectrum Image

Simultaneous HAADF Signal

SiC

SiO₂
EELS Spectrum Imaging

HAADF Survey Image

SiC

SiO₂

Simultaneous HAADF Signal

EELS Spectrum Image

SiC

SiO₂
EELS Spectrum Imaging

HAADF Survey Image

Simultaneous HAADF Signal

EELS Spectrum Image

SiC

SiO$_2$

10 nm

SiC

SiO$_2$
EELS Spectrum Imaging

HAADF Survey Image

SiC

10 nm

SiO₂

EELS Spectrum Image

Simultaneous HAADF Signal

SiC

SiO₂
EELS Spectrum Imaging

HAADF Survey Image

SiC

SiO$_2$

10 nm

EELS Spectrum Image

Simultaneous HAADF Signal

SiC

SiO$_2$
EELS Spectrum Imaging

HAADF Survey Image

SiC

SiO₂

10 nm

EELS Spectrum Image

Simultaneous HAADF Signal

SiC

SiO₂
EELS Spectrum Imaging

One spectrum per pixel

SiC

SiO$_2$

Simultaneous HAADF Signal

HAADF Survey Image

EELS Spectrum Image
EELS Spectrum Imaging

HAADF Survey Image

One spectrum per pixel

SiC

SiO₂

10 nm

EELS Spectrum Image

Intensity

Energy loss (eV)

Si-L EELS edge
NO-anneal effects (previous results)

- Measured w_{TL} with chemical shift
- w_{TL} correlates inverse-linearly with μ_{FE}
- NO-anneal removes/passivates mobility-limiting defects
 - Compositionally and electronically

Samples fabricated from 2010 SiC stock
Newer work - Orientation effects

- Investigating effects of substrate orientation:
 - Newer SiC stock (2014)
 - [0001] Si-face, with and without miscut
 - [1120] a-face
 - Each with and without NO
Newer work - Orientation effects

- Investigating effects of substrate orientation:
 - Newer SiC stock (2014)
 - [0001] Si-face, with and without miscut
 - [1120] a-face
 - Each with and without NO

- Little to no effect of NO annealing
- Contradicts expectations from previous result
Newer work - Orientation effects

• Investigating effects of substrate orientation:
 • Newer SiC stock (2014)
 • [0001] Si-face, with and without miscut
 • [1120] a-face
 • Each with and without NO

• Little to no effect of NO annealing

• *Contradicts expectations from previous result*
NEW ANALYSIS TECHNIQUE

Hyperspectral signal decomposition – machine learning

- Si-$L_{2,3}$
- C-K
- O-K
Decomposition analysis

- EELS spectrum imaging as “big data”
 - Machine learning improves sensitivity; highlights most important features
 - Unsupervised learning promotes bias-free analysis
Decomposition analysis

• EELS spectrum imaging as “big data”
 • Machine learning improves sensitivity; highlights most important features
 • Unsupervised learning promotes bias-free analysis

• Non-negative matrix factorization (NMF)

Olivetti Faces Dataset

NMF Components
Interface components at NO-annealed interfaces

SiC/SiO$_2$ EELS Spectrum Image

- Simple sum improves S/N, but cannot detect faint or overlapping signals
Decomposition analysis – Si $L_{2,3}$

- No significant variation between orientations
 - a-face data shown
Decomposition analysis – Si $L_{2,3}$

- No significant variation between orientations
 - a-face data shown
- NO anneal gives rise to interfacial state with doublet peak
Si-L\textsubscript{2,3} Interface Component – N Bonding

- \text{Si}_3\text{N}_4\text{ theory and experiment (Skiff et al.)}
 - Doublet peak at same energy as our peak
- Effect of N-bonding
 - Si-C-N-O bonding configurations?
 - Evidence of N-bonding at interface
 - DFT modeling will reveal further details

Decomposition analysis – C K edge

- **α-face without NO**
- **α-face miscut with NO**

- No significant variation between orientations
 - α-face data shown
Decomposition analysis – C K edge

- No significant variation between orientations
 - \(a\)-face data shown
- NO anneal gives rise to interfacial state with pre-peak intensity attributable to \(sp^2\) from N-bonding

O K edge analysis

<table>
<thead>
<tr>
<th>Si-face 4° miscut (Si-NO-4)</th>
<th>Si-face no miscut (Si-NO-0)</th>
<th>a-face no miscut (a-NO-0)</th>
</tr>
</thead>
</table>

Decomposition Results

- All samples have an O-K pre-peak feature, but a-face is strongest and localized near the interface.
- Intensity at lower energy indicates acceptor levels near edge of band gap, providing insight into the origins of improved mobility.

XPS DEPTH PROFILING
XPS Interfacial analysis – Si-2p

- Can we correlate the EELS?

- XPS is surface-sensitive binding energy measurement

- Measured oxidized and NO-POA samples etched near to the interface

“Raw” Si-2p
XPS Interfacial analysis – Si-2p

• Can we correlate the EELS?

• XPS is surface-sensitive binding energy measurement

• Measured oxidized and NO-POA samples etched near to the interface

Peak-fitted Si-2p
XPS Interfacial analysis – Si-2p

• Can we correlate the EELS?

• XPS is surface-sensitive binding energy measurement

• Measured oxidized and NO-POA samples etched near to the interface

SiC signal

2hr NO anneal
XPS Interfacial analysis – Si-2p

- Can we correlate the EELS?
- XPS is surface-sensitive binding energy measurement
- Measured oxidized and NO-POA samples etched near to the interface

![Graph showing SiO₂ signal](image-url)
XPS Interfacial analysis – Si-2p

- Can we correlate the EELS?

- XPS is surface-sensitive binding energy measurement

- Measured oxidized and NO-POA samples etched near to the interface
Angle resolved XPS - interface width

AR-XPS Si-2p data (NO annealed)

\[d_{\text{interface}} = 1.69 \text{ nm} \]

\[
\frac{I_{\text{int}}}{I_{\text{bulk}}} = \frac{c_{\text{int}}}{c_{\text{bulk}}} \left[\exp \left(\frac{d_{\text{int}}}{\lambda \cos \theta} \right) - 1 \right]
\]

Angle resolved XPS - interface width

AR–XPS Si–2p data (NO annealed)

\[d_{\text{interface}} = 1.69 \text{ nm} \]

\[
\frac{I_{\text{int}}}{I_{\text{bulk}}} = \frac{c_{\text{int}}}{c_{\text{bulk}}} \left[\exp \left(\frac{d_{\text{int}}}{\lambda \cos \theta} \right) - 1 \right]^{*}
\]

Angle resolved XPS - interface width

\[d_{\text{interface}} = 1.69 \text{ nm} \]

\[\frac{I_{\text{int}}}{I_{\text{bulk}}} = \frac{c_{\text{int}}}{c_{\text{bulk}}} \left[\exp \left(\frac{d_{\text{int}}}{\lambda \cos \theta} \right) - 1 \right] \]

Angle resolved XPS - interface width

\[\frac{I_{\text{int}}}{I_{\text{bulk}}} = \frac{c_{\text{int}}}{c_{\text{bulk}}} \left[\exp \left(\frac{d_{\text{int}}}{\lambda \cos \theta} \right) - 1 \right] \]

\[d_{\text{interface}} = 1.69 \text{ nm} \]

Angle resolved XPS - interface width

<table>
<thead>
<tr>
<th>Face / Treatment</th>
<th>$d_{\text{interface}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>O$_2$ oxidation</td>
<td>2.97 nm</td>
</tr>
<tr>
<td>O$_2$ oxidation + NO Post-anneal</td>
<td>1.69 nm</td>
</tr>
</tbody>
</table>
Angle resolved XPS - interface width

<table>
<thead>
<tr>
<th>Face / Treatment</th>
<th>$d_{\text{interface}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>**O}_2 oxidation</td>
<td>2.97 nm</td>
</tr>
<tr>
<td>**O}_2 oxidation + NO Post-anneal</td>
<td>1.69 nm</td>
</tr>
</tbody>
</table>

- Similar values to EELS measurements
- Definitely not “abrupt”
Summary

• The shift of the Si-L$_{2,3}$ edge is a good indicator of the width of the transition region in 4H SiC/SiO$_2$.
 • Newer devices do not follow previously observed trend
 • Measuring interface width does not reveal what is happening inside
• Decomposition of EELS signals reveal a chemically/electrically distinct interface state in all NO-annealed samples
 • Likely significant impacts on mobility and performance
 • Spatial distribution matches measurements of w_{TL}
• XPS corroborates EELS findings of Si$_3$N$_4$-like N bonding at the interface, with similar spatial extent
 • Transition region with approximately 1.5-2.0 nm

Future work

• Theoretical modeling of DOS for explanation
• Exploration of lattice strain in different substrate orientations (CBED, Geometric Phase Analysis)
Acknowledgements

- ARL Contracts W911NF-11-2-0044 and W911NF-07-2-0046.
- NSF Graduate Research Fellowship Grant DGE 1322106
- AIMLab at UMD – supported by NSF
THANK YOU

Questions/comments/discussion?
Joshua Taillon: jtaillon@umd.edu
Lourdes Salamanca-Riba: riba@umd.edu