REVEALING HIDDEN INTERFACIAL STATES IN NO PASSIVATED 4H-SIC/SIO₂ Structures using TEM-EELS and XPS^{*}

Joshua Taillon,¹ Karen Gaskell,² Sarit Dahr,³ Gang Liu,⁴ Leonard Feldman,⁴ Tsvetanka Zheleva,⁵ Aivars Lelis,⁵ and Lourdes Salamanca-Riba¹

2016 March APS, X7.03 Friday March 18, 2016 – Room 303 8:24AM – Baltimore, MD *Supported by ARL under contract no. W911NF-11-2-0044 and W911NF-07-2-0046 , as well as NSF Graduate Research Fellowship Grant DGE 1322106 (J. Taillon)

¹ Materials Science and Engineering, University of Maryland College Park

² Chemistry and Biochemistry, University of Maryland College Park

³ Department of Physics, Auburn University

⁴ Institute for Advanced Materials, Rutgers University

⁵ U.S. Army Research Laboratory

Motivation and background

- SiC: Very promising for high temperature, high power, and high radiation environments
 - NO post oxidation anneal (POA) drastically improves performance

Motivation and background

- SiC: Very promising for high temperature, high power, and high radiation environments
 - NO post oxidation anneal (POA) drastically improves performance
- Electrically active defects limit:
 - Carrier mobility
 - Reliability
 - Device stability

1

Motivation and background

- SiC: Very promising for high temperature, high power, and high radiation environments
 - NO post oxidation anneal (POA) drastically improves performance
- Electrically active defects limit:
 - Carrier mobility
 - Reliability
 - Device stability
- What is the true nature of the interface, and how do our processing techniques really affect it?
 - Some work indicates a distinct transition region (EELS)^{1, 2}
 - Others suggest abrupt transition (XPS, MEIS, etc.)³⁻⁴

- ² Chang, K. C. et al. J. Appl. Phys. 97, 104920 (2005).
- ⁴ X. Zhu, et al., Appl. Phys. Lett., 97(7), 071908 (2010).

¹ J. Taillon, L. Salamanca-Riba, *et al.*, J. Appl. Phys. 113, 044517 (2013).

³ H. Watanabe, et al., Appl. Phys. Lett., 99(2), 021907 (2011).

TEM-EELS EXPERIMENTS

Electron Energy Loss Spectroscopy (EELS)

 E-beam has many interactions with specimen:

• EELS is measurement of the energy lost when an electron interacts with the sample:

Adapted from Williams and Carter, *Transmission Electron Microscopy*, (2009).

SiO₂

EELS Spectrum Imaging

EELS Spectrum Image

CONTRACTOR OF THE OWNER

Simultaneous HAADF Signal

EELS Spectrum Image

Simultaneous HAADF Signal

EELS Spectrum Image

Simultaneous HAADF Signal

EELS Spectrum Image

Simultaneous HAADF Signal

Simultaneous HAADF Signal

NO-anneal effects (previous results)

- Measured w_{TL} with chemical shift
- w_{TL} correlates inverse-linearly with μ_{FE}
- NO-anneal removes/passivates mobility-limiting defects
 - Compositionally and electronically

J. Taillon, L. Salamanca-Riba, et al., J. Appl. Phys. **113**, 044517 (2013).

*Samples fabricated from 2010 SiC stock

Newer work - Orientation effects

- Investigating effects of substrate orientation:
 - Newer SiC stock (2014)
 - [0001] Si-face, with and without miscut
 - [1120] a-face
 - Each with and without NO

Newer work - Orientation effects

- Investigating effects of substrate orientation:
 - Newer SiC stock (2014)
 - [0001] Si-face, with and without miscut
 - [1120] a-face
 - Each with and without NO

- Little to no effect of NO annealing
- *Contradicts expectations from previous result*

Newer work - Orientation effects

- Investigating effects of substrate orientation:
 - Newer SiC stock (2014)
 - [0001] Si-face, with and without miscut
 - [1120] a-face
 - Each with and without NO

- Little to no effect of NO annealing
- *Contradicts expectations from previous result*

NEW ANALYSIS TECHNIQUE

Hyperspectral signal decomposition – machine learning

- Si-*L*_{2,3}
- C-*K*
- O-*K*

Decomposition analysis

- EELS spectrum imaging as "big data"
 - Machine learning improves sensitivity; highlights most important features
 - Unsupervised learning promotes bias-free analysis

Decomposition analysis

- EELS spectrum imaging as "big data"
 - Machine learning improves sensitivity; highlights most important features
 - Unsupervised learning promotes bias-free analysis
- Non-negative matrix factorization (NMF)

Olivetti Faces Dataset

NMF Components

Interface components at NO-annealed interfaces

 Simple sum improves S/N, but cannot detect faint or overlapping signals

Decomposition analysis – Si $L_{2,3}$

- No significant variation between orientations
 - *a*-face data shown

8

THE DEPARTMENT of MATERIALS SCIENCE AND ENGINEERING

Decomposition analysis – Si $L_{2,3}$

- No significant variation between orientations
 - *a*-face data shown
- NO anneal gives rise to interfacial state with doublet peak

Si-L_{2.3} Interface Component – N Bonding

- Si₃N₄ theory and experiment (Skiff et al.)
 - Doublet peak at same energy as our peak
- Effect of N-bonding
 - Si-C-N-O bonding configurations?
 - Evidence of N-bonding at interface
 - DFT modeling will reveal further details

Skiff, W. M., et al., J. Appl. Phys. 62, 2439-2449 (1987).

Decomposition analysis – C K edge

- No significant variation between orientations
 - *a*-face data shown

8

THE DEPARTMENT of MATERIALS SCIENCE AND ENGINEERING

Decomposition analysis – C K edge

a-face without NO

- No significant variation between orientations
 - *a*-face data shown
- NO anneal gives rise to interfacial state with pre-peak intensity attributable to sp² from N-bonding*

*J. Hu, et al., Phys. Rev. B 57, R3185 (1998).

- All samples have an O-K pre-peak feature, but a-face is strongest and localized near the interface
- Intensity at lower energy indicates acceptor levels near edge of band gap, providing insight into the origins of improved mobility^{*}

*Muller, D. A. et al. *Nature* 399, 758–761 (1999).

XPS DEPTH PROFILING

- Can we correlate the EELS?
- XPS is surface-sensitive binding energy measurement
- Measured oxidized and NO-POA samples etched near to the interface

"Raw" Si-2p

- Can we correlate the EELS?
- XPS is surface-sensitive binding energy measurement
- Measured oxidized and NO-POA samples etched near to the interface

Peak-fitted Si-2p

- Can we correlate the EELS?
- XPS is surface-sensitive binding energy measurement
- Measured oxidized and NO-POA samples etched near to the interface

SiC signal

- Can we correlate the EELS?
- XPS is surface-sensitive binding energy measurement
- Measured oxidized and NO-POA samples etched near to the interface

SiO₂ signal

- Can we correlate the EELS?
- XPS is surface-sensitive binding energy measurement
- Measured oxidized and NO-POA samples etched near to the interface

Interface signal

*L. I. Johansson, et al. Surface Science, 529, 515 (2003).

*L. I. Johansson, et al. Surface Science, 529, 515 (2003).

*L. I. Johansson, et al. Surface Science, 529, 515 (2003).

*L. I. Johansson, et al. Surface Science, 529, 515 (2003).

Face / Treatment	d _{interface}
O ₂ oxidation	2.97 nm
O ₂ oxidation + NO Post-anneal	1.69 nm

Face / Treatment	d _{interface}
O ₂ oxidation	2.97 nm
O ₂ oxidation + NO Post-anneal	1.69 nm

- Similar values to EELS measurements
- Definitely not "abrupt"

Summary

- The shift of the Si-L_{2,3} edge is a good indicator of the width of the transition region in 4H SiC/SiO₂.
 - Newer devices do not follow previously observed trend
 - Measuring interface width does not reveal what is happening inside
- Decomposition of EELS signals reveal a chemically/electrically distinct interface state in all NO-annealed samples
 - Likely significant impacts on mobility and performance
 - Spatial distribution matches measurements of w_{TL}
- XPS corroborates EELS findings of Si₃N₄-like N bonding at the interface, with similar spatial extent
 - Transition region with approximately 1.5-2.0 nm

Future work

- Theoretical modeling of DOS for explanation
- Exploration of lattice strain in different substrate orientations (CBED, Geometric Phase Analysis)

Acknowledgements

- ARL Contracts W911NF-11-2-0044 and W911NF-07-2-0046.
- NSF Graduate Research Fellowship Grant DGE 1322106
- AIMLab at UMD supported by NSF

THANK YOU

Questions/comments/discussion? Joshua Taillon: jtaillon@umd.edu Lourdes Salamanca-Riba: riba@umd.edu