

Joshua Taillon^{1†}, Voshadhi Amarasinghe², Sarit Dhar³, Leonard Feldman², Tsvetanka Zheleva⁴, Aivars Lelis⁴, and Lourdes Salamanca-Riba¹

2016 Fall MRS GSA Finalist Talk

November 29, 2016 12:30 PM – EM11.6.04 Sheraton – Beacon B *Supported by ARL under Grants No. W911NF-11-2-0044 and W911NF-07-2-0046, and NSF GRFP Grant No. DGE 1322106

¹ Materials Science and Engineering University of Maryland, College Park, MD

² Institute for Advanced Materials, Rutgers University, New Brunswick, NJ

³ Physics, Auburn University, Auburn, AL

⁴ U.S. Army Research Laboratory, Adelphi, MD

[†] Present address: Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD

THE DEPARTMENT of MATERIALS SCIENCE AND ENGINEERING

JAMES CLARJ

Why silicon carbide (SiC)?

Projected SiC + GaN revenues 17x to \$2.5B by 2023

(Semiconductor Today, 2016)

Efficiency comparison of SiC vs. Si (Adapted from Rozen, 2012)

• Wide bandgap

- Good properties
- Native SiO₂
- More efficient than Si at high voltage

A. JAMES CLARK

Unresolved problems

- Electrically active defects limit:
 - Carrier mobility
 - Reliability
 - Device stability

- SiC: Very promising for high temperature, high power, and high radiation environments
 - NO post oxidation anneal (POA) drastically improves performance
 - Phosphorus and boron potential next-generation techniques
- What is the true nature of the interface, and how do our processing techniques really affect it?
 - Our (and others') work indicates a distinct transition region (EELS)¹⁻²
 - Others suggest abrupt transition; only roughness (XPS, MEIS, etc.)³⁻⁴

² K. C. Chang, et al. J. Appl. Phys. 97, 104920 (2005).
⁴ X. Zhu, et al., Appl. Phys. Lett., 97(7), 071908 (2010).

¹ J. Taillon, L. Salamanca-Riba, et al., J. Appl. Phys. 113, 044517 (2013).

³ H. Watanabe, et al., Appl. Phys. Lett., **99**(2), 021907 (2011).

Specific effects investigated

- For NO-annealed devices:
 - Does the orientation of the substrate affect incorporation of nitrogen?
 - Why such a drastic improvement on the *a*-face?

	Peak µ _{FE} (cm²/V s)
a-face	83
Si-face	42

Mobility of *a*-face vs. Si-face with NO post-anneal (Liu, 2013)

- Next-generation processing
- Analysis of <u>phosphorus</u> and <u>boron</u> incorporation
- How do these passivations differ from NO annealing?

High µ in Bpassivated device (Okamoto, 2014)

A. JAMES CLARK

High µ in P-annealed devices (Liu, 2013)

(Very) Brief introduction to TEM-EELS

Electron Energy Loss Spectroscopy

EELS energy band schematic (Williams and Carter, 2009)

EELS Spectrum Imaging

STEM survey image at interface

EELS spectrum collected at each point

A. JAMES CLARK

What is at the interface?

Si-L_{2,3} ELNES signal

A. JAMES CLARK

Hyperspectral decomposition (or unmixing)

- Technique to recover multiple unknown signals from a spectrum image
- Consider a spectrum image as a matrix, and use matrix decomposition:

- Any number of decomposition strategies can be used
 - Non-negative Matrix Factorization (NMF) is very suitable for EELS data
 - Unbiased; unsupervised; only assumption is positivity of data

Unmixing of Si-L_{2,3} EELS signal

a-face on-axis

- No significant variation between different orientations
 - a-face results shown
- NO anneal gives rise to interfacial state in all samples
 - No such state in samples only oxidized
 - Very similar to Si₃N₄ signal

Unmixing of C-K EELS signal

- NO anneal gives rise to interfacial state in all samples
 - No such state in samples only oxidized
- Pre-edge intensity indicative of sp² bonding, rather than sp³
 - Often observed in C-N configurations
- Strong presence of N in carbon bonds

Interfacial nitrogen's effects observed in Si and C signals, in all samples

Unmixing of O-K EELS signal

- Only sample with interfacial component was *a*-face with NO anneal
- Interface has edge onset 2-3 eV lower than SiO₂
 - Reduced bandgap
 - Increased dielectric constant
 - Enhanced mobility
- Likely part of the drastically enhanced mobility on the *a*-face
 - Silicon/carbon oxynitride configuration

Summary of crystallographic orientation effects

- Confirmation of Si_3N_4 -like bonding, measured at $Si-L_{2,3}$ edge
 - Further agreement between EELS and XPS results
 - Miscut/roughness alone does not appear to alter chemical states
- Carbon bonds have sp² character in NO annealed devices (C-K edge)
 - Signals the N bonds to both Si and C
- Distinct oxygen interfacial signal only in NO annealed *a*-face device
 - *a*-face enables additional bonding configurations that affect the oxide signal
 - Nanometer scale region of reduced bandgap likely origin of enhanced mobility in such orientations

Phosphorus anneal imaging results

- HAADF-STEM (Z-contrast) shows significant difference in oxide quality
 - Bright spots correspond to higher mass
 - Non-uniformly distributed; lighter atomic mass layer 5 – 10 nm in thickness at interface

- EELS shows P-rich clusters
 - 3.6 ± 0.8 nm in diameter

Boron anneal imaging results

SiC

40 Boron 80

- 6 Ν B С Carbon Boron Nitrogen 10.811 12.011 14.007 13 14 15 Si Ρ Α Aluminum Silicon Phosphorus 26.981 28.085 30.974
- EELS matches expectations from HAADF-STEM
 - B-rich region near the interface (about 1.5 nm wide)
- 1.0 nm diffusion of B into SiC substrate
 - *p*-type doping origin of increased V_{th}

- HAADF-STEM (Z-contrast) shows more uniformity in oxide
 - Darker layer at interface about 1.5 nm in thickness
 - Corresponds to lighter mass (possibly boron)

Phosphorus and Boron anneal summary

- Both P and B incorporated into gate oxide differently than NO
 - Significantly more oxide impact than observed after nitridation
- Phosphorus distributed into nanometer sized P-rich clusters
 - Likely to have significant impacts on polarization instability
 - Offers opportunities for gate oxide engineering (i.e. can we control phosphorus distribution?)
- Boron segregates preferentially to the SiC/oxide interface
- Like NO, but with substantially more boron remaining throughout the BSG layer
- B diffuses into SiC, and distribution throughout oxide is not uniform

SCHOOL OF ENGINEERING

Individual contributions

- Essentially all work except for device fabrication
 - TEM lamellae preparation
 - TEM/EELS imaging
 - Data processing
- Many more experiments performed
 - Spin-etch XPS depth profiles
 - Devising method to measure w_{TL}
 - SiC work about ½ of overall PhD work
- Open-source software contributor
 - HyperSpy data analysis package

Acknowledgments

Funding/Support

W911NF-11-2-0044

Graduate Research Fellowship Program DGE 1322106

Backscatter electron image of PSG on SiC, after 2 minutes of patterning with the Gaia FIB (20pA current). Image contrast arises from the mass difference caused by Ga implantation into the sample

Facilities/Assistance

Joshua Schumacher