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Motivation and background

* Electrically active defects limit:
- Carrier mobility

Reliability

- Device stability

* SiC: Very promising for high temperature,

high power, and high radiation environments
- NO post oxidation anneal (POA) drastically improves performance
Phosphorus and boron potential next-generation techniques

*  Whatis the true nature of the interface, and how do our processing

techniques really affect it?
Our (and others’) work indicates a distinct transition region (EELS)1-2
Others suggest abrupt transition; only roughness (XPS, MEIS, etc.)34

1 ). Taillon, L. Salamanca-Riba, et al., J. Appl. Phys. 113,044517 (2013). 2 K.C.Chang, et al. J. Appl. Phys. 97, 104920 (2005).
8 H. Watanabe, et al., Appl. Phys. Lett., 99(2), 021907 (2011). 4 X.Zhu, et al., Appl. Phys. Lett., 97(7),071908 (2010).
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Motivation for orientation experiments
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Next-generation processing

- “Next-generation” passivation techniques are
more poorly understood than the NO process

*  Phosphorus and boron passivations are
particularly promising
- Only one TEM study of P,and none of B in
literature
- How do they differ from NO-annealing?
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EELS Spectrum Imaging
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What is at the interface?

SiC Int. SiO,

Linear combination?
Or something more?
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Hyperspectral decomposition (or unmixing)

* Technique to recover multiple unknown signals from a spectrum image

*  Consider a spectrum image as a matrix, and use matrix decomposition:

Total Where is What does
¢ . — | eachsignal |X eachsignal
>pectrumimage located? look like?
Original spectrum / T A\ \ Loading spectra
image Position Energy Component (eigenvalues)
Score “maps”  number

* Any number of decomposition strategies can be used
* Non-negative Matrix Factorization (NMF) is very suitable for EELS data
* Unbiased; unsupervised; only assumption is positivity of data
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* Only sample with interfacial
component was a-face with NO

anneal

* Interface has edge onset 2-3 eV

lower than SiO,

* Reduced bandgap
* |ncreased dielectric constant
* Enhanced mobility

* Likely part of the drastically
enhanced mobility on the a-face
* Silicon/carbon oxynitride

configuration
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Summary of crystallographic orientation effects

*  Confirmation of SizN4-like bonding, measured at Si-L,; edge

Further agreement between EELS and XPS results
Miscut/roughness alone does not appear to alter chemical states

- Carbon bonds have sp? character in NO annealed devices (C-K
edge)

Signals the N bonds to both Siand C

* Distinct oxygen interfacial signhal only in NO annealed a-face
device

a-face enables additional bonding configurations that affect the oxide signal
Nanometer scale region of reduced bandgap likely origin of enhanced mobility in such
orientations
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« HAADF-STEM (Z-contrast) shows

significant difference in oxide quality
* Bright spots correspond to higher mass
* Non-uniformly distributed; lighter atomic mass

layer 5 - 10 nm in thickness at interface

EELS shows P-rich clusters
* 3.6+0.8 nmindiameter
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Boron anneal imaging results
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« HAADF-STEM (Z-contrast) shows more

uniformity in oxide
* Darker layer at interface about 1.5 nm in thickness
* Corresponds to lighter mass (possibly boron)

* EELS matches
expectations from
HAADF-STEM

* B-richregion near
the interface (about
1.5 nm wide)

* 1.0 nmdiffusion of
B into SiC
substrate
* p-type doping origin

of increased Vi,
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Phosphorus and Boron anneal summary

- Both P and B incorporated into gate oxide differently than
NO

- Significantly more oxide impact than observed after nitridation

* Phosphorus distributed into nanometer sized P-rich

clusters

- Likely to have significant impacts on polarization instability
- Offers opportunities for gate oxide engineering (i.e. can we control phosphorus
distribution?)

- Boron segregates preferentially to the SiC/oxide interface

- Like NO, but with substantially more boron remaining throughout the BSG layer
- Bdiffuses into SiC, and distribution throughout oxide is not uniform
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Remaining questions for SiC

* Continued investigation of boron and phosphorus annealed

oxides
- Results presented here are just the very surface
- Can these oxides be tailored to improve performance, and how do the oxide
characteristics change?

* Analysis of substrate strain at the interface
- Could have significant effects on performance of devices, but little is known
- Do thevarious processing conditions change the strain substantially?
- How does a-face compare to Si-face?
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