Analytical Electron Microscopy of Interfacial States in 4H-SiC/SiO₂ MOS Devices

Joshua Taillon¹†, Voshadhi Amarasinghe², Sarit Dhar³, Leonard Feldman², Tsvetanka Zheleva⁴, Aivars Lelis⁴, and Lourdes Salamanca-Riba¹

2016 Fall MRS
November 30, 2016
9:15 AM – EM11.6.04
Hynes – Room 201

*Supported by ARL under Grants No. W911NF-11-2-0044 and W911NF-07-2-0046, and NSF GRFP Grant No. DGE 1322106

¹ Materials Science and Engineering University of Maryland, College Park, MD
² Institute for Advanced Materials, Rutgers University, New Brunswick, NJ
³ Physics, Auburn University, Auburn, AL
⁴ U.S. Army Research Laboratory, Adelphi, MD
† Present address: Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD
Outline

- Motivation
- Introduction to techniques
- SiC MOSFET characterization
 - NO annealing and effects of crystallographic orientation
 - Boron and phosphorus passivations
- Conclusions and Future work
Motivation and background

- **Electrically active defects limit:**
 - Carrier mobility
 - Reliability
 - Device stability

- **SiC: Very promising for high temperature, high power, and high radiation environments**
 - NO post oxidation anneal (POA) drastically improves performance
 - Phosphorus and boron potential next-generation techniques

- **What is the true nature of the interface, and how do our processing techniques really affect it?**
 - Our (and others’) work indicates a distinct transition region (EELS)\(^1\)\(^-2\)
 - Others suggest abrupt transition; only roughness (XPS, MEIS, etc.)\(^3\)\(^-4\)

Motivation for orientation experiments

- Origins for mobility enhancement on a-face are poorly understood
- Does NO anneal operate in a different manner for the a-face compared to the Si-face?

SiC crystal face orientations (Adapted from Dhar, 2005)

Mobility of a-face vs. Si-face (Liu, 2013)
Next-generation processing

- “Next-generation” passivation techniques are more poorly understood than the NO process

- Phosphorus and boron passivations are particularly promising
 - Only one TEM study of P, and none of B in literature
 - How do they differ from NO-annealing?

High μ in B-passivated device
(Okamoto, 2014)

High μ in P-annealed devices
(Liu, 2013)
(Very) Brief introduction to TEM-EELS

Electron Energy Loss Spectroscopy

EELS energy band schematic
(Williams and Carter, 2009)
EELS Spectrum Imaging

STEM survey image at interface

EELS spectrum collected at each point

SiC

SiO$_2$

10 nm

Intensity (log scale)

Energy (eV)

Zero-loss peak

Plasmon interaction losses

Si-$L_{2,3}$

C-K

O-K

Background Subtracted Si-$L_{2,3}$ Edge
What is at the interface?

SiO$_2$ Int. SiC

EELS Spectrum Image

Si-$L_{2,3}$ ELNES signal

Linear combination? Or something more?
Hyperspectral decomposition (or unmixing)

- Technique to recover multiple unknown signals from a spectrum image
- Consider a spectrum image as a matrix, and use matrix decomposition:

 - Any number of decomposition strategies can be used
 - Non-negative Matrix Factorization (NMF) is very suitable for EELS data
 - Unbiased; unsupervised; only assumption is positivity of data
Unmixing of Si-$L_{2,3}$ EELS signal

- No significant variation between different orientations
 - a-face results shown

- NO anneal gives rise to interfacial state in all samples
 - No such state in samples only oxidized
 - Very similar to Si$_3$N$_4$ signal
Si-L\textsubscript{2,3} Interface – Evidence of N bonding

Reduced edge onset for α-face

Effect of substrate orientation

Comparison to Si\textsubscript{3}N\textsubscript{4} literature (Skiff, 1987)
Unmixing of C-K EELS signal

- NO anneal gives rise to interfacial state in all samples
 - No such state in samples only oxidized
- Pre-edge intensity indicative of sp^2 bonding, rather than sp^3
 - Often observed in C-N configurations
- Strong presence of N in carbon bonds

Interfacial nitrogen’s effects observed in Si and C signals, in all samples
Unmixing of O-K EELS signal

- Only sample with interfacial component was \(a\)-face with NO anneal
- Interface has edge onset 2-3 eV lower than \(\text{SiO}_2\)
 - Reduced bandgap
 - Increased dielectric constant
 - Enhanced mobility
- Likely part of the drastically enhanced mobility on the \(a\)-face
 - Silicon/carbon oxynitride configuration
Summary of crystallographic orientation effects

- **Confirmation of Si$_3$N$_4$-like bonding, measured at Si-$L_{2,3}$ edge**
 - Further agreement between EELS and XPS results
 - Miscut/roughness alone does not appear to alter chemical states

- **Carbon bonds have sp^2 character in NO annealed devices (C-K edge)**
 - Signals the N bonds to both Si and C

- **Distinct oxygen interfacial signal only in NO annealed a-face device**
 - a-face enables additional bonding configurations that affect the oxide signal
 - Nanometer scale region of reduced bandgap likely origin of enhanced mobility in such orientations
Phosphorus anneal imaging results

- HAADF-STEM (Z-contrast) shows significant difference in oxide quality
 - Bright spots correspond to higher mass
 - Non-uniformly distributed; lighter atomic mass layer 5 – 10 nm in thickness at interface

- EELS shows P-rich clusters
 - 3.6 ± 0.8 nm in diameter
Boron anneal imaging results

- EELS matches expectations from HAADF-STEM
 - B-rich region near the interface (about 1.5 nm wide)

- 1.0 nm diffusion of B into SiC substrate
 - p-type doping origin of increased V_{th}

- HAADF-STEM (Z-contrast) shows more uniformity in oxide
 - Darker layer at interface about 1.5 nm in thickness
 - Corresponds to lighter mass (possibly boron)
Phosphorus and Boron anneal summary

• Both P and B incorporated into gate oxide differently than NO
 - Significantly more oxide impact than observed after nitridation

• Phosphorus distributed into nanometer sized P-rich clusters
 - Likely to have significant impacts on polarization instability
 - Offers opportunities for gate oxide engineering (i.e. can we control phosphorus distribution?)

• Boron segregates preferentially to the SiC/oxide interface
 - Like NO, but with substantially more boron remaining throughout the BSG layer
 - B diffuses into SiC, and distribution throughout oxide is not uniform
Remaining questions for SiC

• Continued investigation of boron and phosphorus annealed oxides
 - Results presented here are just the very surface
 - Can these oxides be tailored to improve performance, and how do the oxide characteristics change?

• Analysis of substrate strain at the interface
 - Could have significant effects on performance of devices, but little is known
 - Do the various processing conditions change the strain substantially?
 - How does a-face compare to Si-face?
Acknowledgments

Funding/Support

ARL
W911NF-11-2-0044

Graduate Research Fellowship Program
DGE 1322106

Backscatter electron image of PSG on SiC, after 2 minutes of patterning with the Gaia FIB (20pA current).
Image contrast arises from the mass difference caused by Ga implantation into the sample

Facilities/Assistance

Thank you!

Joshua Schumacher

THE DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING