

Advanced Analytical Microscopy at the Nanoscale:

Applications in Wide Bandgap and Solid Oxide Fuel Cell Materials

Joshua Taillon Dissertation Examination

Examination committee:

Professor Lourdes Salamanca-Riba – *Chair* Associate Professor John Cumings Professor Neil Goldsman – *Dean's Representative* Professor Eric Wachsman Dr. Tsvetanka Zheleva

Friday July 8th, 2016 College Park, MD AV Williams Room 1146

Outline

- Overall introduction
- SiC MOSFET characterization
 - Transition layer measurements
 - XPS interface analysis
 - Effects of crystallographic orientation
- Solid oxide fuel cell reconstructions
 - Intro & Methodology developments
 - LSM-YSZ cathode degradation
 - LSCF-GDC cathode degradation
- Conclusions and Future work

A. JAMES CLARK

Outline

- Overall introduction
- SiC MOSFET characterization
 - Transition layer measurements
 - XPS interface analysis
 - Effects of crystallographic orientation
- Solid oxide fuel cell reconstructions
 - Intro & Methodology developments
 - LSM-YSZ cathode degradation
 - LSCF-GDC cathode degradation
- Conclusions and Future work

Why Microscopy?

Seeing is believing!

GeoSafari 8x optical

JWST Infrared telescope

First TEM (Ruska and Knoll)

(Very) Brief introduction to TEM

- Fundamentally similar to transmitted light microscopy
- Electrons rather than photons
 - Better resolution!
 - Electromagnetic lenses, rather than glass lenses
- Easily combined with analytical techniques (EDS, EELS, etc.)
 - Enables chemical analysis together with structural information

(Very) Brief introduction to TEM

(adapted from Williams and Carter, 2009)

(Very) Brief introduction to TEM-EELS

(Williams and Carter, 2009)

(Very) Brief introduction to TEM-EELS

(Very) Brief introduction to Focused Ion Beams (FIB)

- Scan a finely focused beam of ions across a sample
 - Very similar to SEM technique

• Heavy ions rather than electrons

- Worse resolution, but more interactions
- Electrostatic lenses, rather than electromagnetic
- Combined with SEM, enables almost unparalleled analytical capabilities

(Very) Brief introduction to FIB/SEM

Typical SEM configuration

Dual-beam FIB/SEM configuration

(Very) Brief introduction to FIB/SEM

Dual-beam FIB/SEM configuration

Tescan Gaia FIB at UMD

Unique capabilities of FIB/SEM

In situ cross sections

FEI Company (2016)

Material deposition

"Nano-trek"

T. Hoshino et al., EIPBN (2003)

TEM Sample Prep

In situ liftout technique

Outline

- Overall introduction
- SiC MOSFET characterization
 - Transition layer measurements
 - XPS interface analysis
 - Effects of crystallographic orientation
- Solid oxide fuel cell reconstructions
 - Intro & Methodology developments
 - LSM-YSZ cathode degradation
 - LSCF-GDC cathode degradation
- Conclusions and Future work

Introduction to wide bandgap (WBG) materials

- What is a WBG?
 - Electronic materials beyond silicon
 - Semiconductor with E_g > 3 eV
 - Example properties:

- Why WBG materials?
 - Good mobilities
 - High critical fields
 - High thermal conductivity
 - Useful where silicon is limited

	4H-SiC	GaN	Silicon		
E _g (eV)	3.26	3.39	1.12		
μ _e (cm²/V s)	900	1600	1400	▲	Fast switching
Critical field (MV/cm)	3 – 5	5	0.3	↓	Can block high voltage
Thermal cond. (W/cm K)	3.7	1.3	1.3	←	Efficient heat removal

Introduction to wide bandgap (WBG) materials

- What is a WBG?
 - Electronic materials beyond silicon
 - Semiconductor with E_g > 3 eV
 - Example properties:

	4H-SiC	GaN	Silicon
E _g (eV)	3.26	3.39	1.12
μ _e (cm²/V s)	900	1600	1400
Critical field (MV/cm)	3 – 5	5	0.3
Thermal cond. (W/cm K)	3.7	1.3	1.3

- Why WBG materials?
 - Good mobilities
 - High critical fields
 - High thermal conductivity
 - Useful where silicon is limited

Why silicon carbide (SiC)?

- Native oxide
 - SiO₂ grows natively
 - Easily integrates with existing processes
- Lighter, more efficient than Si in high power applications

SiC structure(s)

- SiC has over 250 polymorphs
 - Determined by stacking sequence
 - 4H is the most relevant for electrical devices

Silicon 3C-SiC

Why not silicon carbide (now)?

(Adapted from Schörner, 1999)

What can be done?

- NO post-oxidation anneal
 - Developed in the late 1990s at Auburn, Vanderbilt, and Rutgers Universities
- Significantly higher mobilities
 - Order of magnitude improvement
 - Has enabled commercialization of SiC components (Wolfspeed, Rohm, etc.)
- How does it work?
 - Incorporation of N close to SiC/SiO₂ interface
 - Passivation of mobility-limiting defects
 - N also introduces hole traps causing negative bias-temperature instability (reliability concern)

SiC MOSFET μ_e before/after NO-annealing (Dhar, 2006)

What is happening at the interface? (prior research)

Transition layers at SiC/SiO₂ interface (*Zheleva*, 2008) **HR-STEM & EELS**

No "transition layer", just roughness of about 2 nm No excess carbon measured by EELS (Liu, 2014)

Problem!

- EELS evidence of enhanced C concentration in SiC at interface
 - T. Zheleva, et al. Appl. Phys. Lett. 93, 022108 (2008).
- Transition layer narrows with NO postanneal
 - T. Biggerstaff, et al. Appl. Phys. Lett. 95, 032108 (2009).
- Angle resolved XPS of interfacial state
 - L. I. Johansson, et al., Surf. Sci. 529, 515–526 (2003).
- HR-STEM focal reconstruction of structure
 - Measured a few monolayers of roughness and attributed the transition region solely to structural effects
 - P. Liu, et al. J. Vac. Sci. Technol. A, **32**, 060603 (2014).

Goals of this Research

• Investigate the 4H-SiC/SiO, interface and resolve its structure

- Discrete transition layers, or no? Size of the layers? Bonding states at the interface?
- Aim to contribute definitive evidence of the interfacial structure

Corroborate EELS and XPS measurements

- Measurements by the two techniques give very different results, but the methods have never been combined in one report from the same research group

• Analyze the effects of substrate orientation and roughness

- What is the origin of the drastically improved mobility on the *a*-face?
- Does roughness at the interface affect the interfacial chemical states?

Outline

- Overall introduction
- SiC MOSFET characterization
 - Transition layer measurements
 - XPS interface analysis
 - Effects of crystallographic orientation
- Solid oxide fuel cell reconstructions
 - Intro & Methodology developments
 - LSM-YSZ cathode degradation
 - LSCF-GDC cathode degradation
- Conclusions and Future work

Experimental design

- Six (6) SiC/SiO₂ MOSFET devices
 - (0001) 4° miscut Si-face wafer substrate
 - NO post-oxidation anneal (0 240 minutes)
 - μ increases with NO-anneal time
 - FIB/SEM extraction of TEM lamellae from gate region

HRTEM of the SiC/SiO₂ interface

- Structurally, no large distinct transition layers
- Compare to Zheleva *et al.*:

4H-SiC/SiO₂ interface from 60 minute NO-annealed MOSFET device

EELS Spectrum Imaging

STEM survey image at interface

EELS spectrum collected at each point

STEM signal measured at each point

EELS Spectrum Imaging

STEM survey image at interface

Energy (eV)

EELS spectrum collected at each point

Chemical shift of Si-L_{2,3}

- Onset energy of edge reflects the bandgap
 - Probes bonding configuration of silicon atoms
 - Measure onset energy across interface

W_{TL} results (Chemical shift method)

NO Annealing summary

- Little structural evidence (HRTEM) for distinct TL
 - HRTEM suggests only 1 nm or so, but chemical evidence contradicts this
- No excess carbon at any of the interfaces
 - In agreement with a number of recent works, and contradicting older (before 2008) studies
- w_{TL} decreases with NO anneal time, N-coverage, and mobility
 - Si- $L_{2,3}$ chemical shift method developed as most reliable metric of w_{TL}
- NO-anneal chemically "sharpens" interfacial area

Results published in J. Applied Physics: J. Taillon, L. Salamanca-Riba, *et al.*, J. Appl. Phys. **113**, 044517 (2013)

Outline

- Overall introduction
- SiC MOSFET characterization
 - Transition layer measurements
 - XPS interface analysis
 - Effects of crystallographic orientation
- Solid oxide fuel cell reconstructions
 - Intro & Methodology developments
 - LSM-YSZ cathode degradation
 - LSCF-GDC cathode degradation
- Conclusions and Future work

Motivation for XPS experiments

- Previous experiment only showed changes in size of TL
 - No specific information about what is changing chemically
- General disagreement in literature between EELS and surface techniques
 - First study to directly compare the two methods
- Prior SiC XPS works have not maintained fidelity of interface
 - Etch all the way to substrate
 - Measure interface during growth
 - Sputter profile physically alters interface

Experimental design

- Four SiC/SiO₂ MOSFET devices
 - (0001) 4° miscut Si-face wafer substrate
 - 55 nm gate oxides
 - 2 samples only oxidized
 - 2 with 2hr NO post-anneal

A. JAMES CLARK

Spin-etch technique

- Adopted from Si/SiO₂ literature
 - F. J. Grunthaner, P. J. Grunthaner, et al., J. Vac. Sci. Technol., **16**, 1443 (1979)

• Drip HF etchant onto spinning substrate

- Careful introduction of etchant allows fine control of etch rate
- No additional contamination/damage to interface

Demonstrated sub-nm uniform etch control:

Brief XPS Review

- X-ray Photoelectron Spectroscopy
- Utilizes photoelectric effect to measure binding energy of electrons within 5 – 10 nm of sample surface
 - X-rays in \rightarrow electrons out
 - Spectrum of binding energies

Can measure:

- Atomic composition
- Chemical states at the surface
- Species and orbital-specific information
- Depth information with angle-resolved measurements

W_{TL} from angle resolved XPS

- Thickness of thin films can be measured by comparing signal intensities at different angles
 - "Attenuation model" (Johansson, 2003)
 - Integrate interface intensity and compare to SiCsubstrate intensity

• Results:

	Winterface
Oxidized	2.9 nm
NO Anneal	1.6 nm

- Spatial distribution of interfacial signal changes with NO anneal
- Similar w_{TL} to those measured by EELS

Outline

- Overall introduction
- SiC MOSFET characterization
 - Transition layer measurements
 - XPS interface analysis
 - Effects of crystallographic orientation
- Solid oxide fuel cell reconstructions
 - Intro & Methodology developments
 - LSM-YSZ cathode degradation
 - LSCF-GDC cathode degradation
- Conclusions and Future work

Motivation for orientation experiments

 Origins for mobility enhancement on *a*-face are poorly understood

- Roughness from miscut angle is known to reduce mobility
 - Does it have a substantial effect on the interface chemistry as well?
- Does NO anneal operate in a different manner for the *a*-face compared to the Si-face?

Experimental design

- Six SiC/SiO₂ MOSFET devices
 - 2 (0001) 4° miscut Si-face devices
 - 2 (0001) on-axis Si-face devices
 - 2 (1120) *a*-face devices
 - ≈ 60 nm gate oxides
 - For each orientation, 1 sample just oxidized;
 1 with 2hr NO post-anneal

HRTEM of different orientations

What is at the interface?

Si-L_{2,3} ELNES signal

Hyperspectral decomposition (or unmixing)

- Technique to recover multiple unknown signals from a spectrum image
- Consider a spectrum image as a matrix, and use matrix decomposition:

Hyperspectral decomposition (or unmixing)

- Technique to recover multiple unknown signals from a spectrum image
- Consider a spectrum image as a matrix, and use matrix decomposition:

- Any number of decomposition strategies can be used
 - Non-negative Matrix Factorization (NMF) is very suitable for EELS data
 - Unbiased; unsupervised; only assumption is positivity of data

Unmixing of Si-L_{2,3} EELS signal

- No significant variation between different orientations
 - *a*-face results shown
- NO anneal gives rise to interfacial state in all samples
 - No such state in samples only oxidized

Si-L_{2,3} Interface – Evidence of N bonding

Comparison of interface components to measured Si₃N₄

Unmixing of C-K EELS signal

NO Anneal

- NO anneal gives rise to interfacial state in all samples
 - No such state in samples only oxidized
- Pre-edge intensity indicative of sp² bonding, rather than sp³
 - Often observed in C-N configurations
- Strong presence of N in carbon bonds

Interfacial nitrogen's effects observed in Si and C signals, in all samples

Unmixing of O-K EELS signal

- Only sample with interfacial component was *a*-face with NO anneal
- Interface has edge onset 2-3 eV lower than SiO₂
 - Reduced bandgap
 - Increased dielectric constant
 - Enhanced mobility
- Likely part of the drastically enhanced mobility on the *a*-face
 - Silicon/carbon oxynitride configuration

Crystallographic orientation summary

- Confirmation of Si₃N₄-like bonding, measured at Si-L_{2,3} edge
 - Further agreement between EELS and XPS results
 - Miscut/roughness alone does not appear to alter chemical states
- Carbon bonds have sp² character in NO annealed devices (C-K edge)
 - Signals the N bonds to both Si and C
- Distinct oxygen interfacial signal only in NO annealed *a*-face device
 - *a*-face enables additional bonding configurations that affect the oxide signal
 - Nanometer scale region of reduced bandgap likely origin of enhanced mobility in such orientations

A. JAMES CLARK

Review of SiC experiments

- *w*_{TL} measurement in NO-anneled SiC/SiO₂ devices
 - Smaller transition layer width correlated with improved device mobility
- Angle resolved XPS exploration of interfacial states
 - *w*_{TL} measured by XPS corroborates EELS measurements
- Substrate orientation investigation
 - Miscut of Si-face does not appreciably alter chemical states (just adds roughness)
 - NO anneal creates distinct interfacial bonding state for Si and C in all samples
 - NO anneal only creates interfacial state for O in the *a*-face sample, proposed as the origin of enhanced mobility

Outline

- Overall introduction
- SiC MOSFET characterization
 - Transition layer measurements
 - XPS interface analysis
 - Effects of crystallographic orientation
- Solid oxide fuel cell reconstructions
 - Intro & Methodology developments
 - LSM-YSZ cathode degradation
 - LSCF-GDC cathode degradation
- Conclusions and Future work

Introduction to solid oxide fuel cells (SOFCs)

- SOFCs provide clean, energy efficient energy conversion
 - Flexible fuels, low emissions, up to 90% efficient (in combined heat & power applications)
- **Operational basics:**
 - Oxidation of fuel(s) at the anode:

 $H_2 + O^{2-} \rightarrow H_2O + 2e^ CO + O^{2-} \rightarrow CO_2 + 2e^ CH_4 + 4O^{2-} \rightarrow 2H_2O + CO_2 + 8e^-$

Reduction of air (O_2) at the cathode:

$$\frac{1}{2}O_2 + 2e^- \to O^{2-}$$

"Bloom Box"

Redox "Cube"

Challenges facing SOFCs

- Widespread commercialization has still not been achieved
 - High temperature / operation costs
 - Overall system costs high
 - Performance degradation (limited durability)

Cathode polarization losses due to degradation

- Longer term effects such as coarsening, secondary phase formation, etc. reduce performance
- H₂O, CO₂, and Cr vapor can accelerate performance losses (Nielsen, 2011)
- Adverse effects on polarization, conductivities, and activation (Adler, 2004)

A. IAMES CLAR

Origins of performance degradation

- Within the cathode, both kinetics and microstructure control ultimate performance
 - Generally:
 - Kinetics \rightarrow transient effects
 - Microstructure \rightarrow permanent effects
- Microstructure can be studied (and quantified) with FIB/SEM
 - FIB-nanotomography:
 - TPB quantification and activity J. R. Wilson, *et al.*, Nat. Mater. 5, 541 (2006).
 - Correlation to cell performance J. R. Smith, *et al.*,
 Solid State Ionics **180**, 90 (2009).

SOFC cathode materials

• Two types of SOFC devices systems with composite cathode layers

 Composite cathode: both electrolyte (ion conducting) and cathode (electron conducting) materials are mixed and sintered together to form a composite structure

- 1) LSM:
 - $(La_{0.8}Sr_{0.2})_{0.95}MnO_{3+\delta}$
 - Perovskite structure
 - Pure electronic conductor
 - High temperature applications
 - Well matched with YSZ electrolyte: $(Y_2O_3)_{0.08}(ZrO_2)_{0.92}$

2) LSCF:

- $(La_{0.6}Sr_{0.4})_{0.95}(Co_{0.2}Fe_{0.8})O_{3-\delta}$
- Perovskite structure
- Mixed ionic electronic conductor
- Intermediate temperature applications
- Well matched with GDC
- electrolyte: (Gd₂O₃)_{0.2}(CeO₂)_{0.8}

Goals of this Research

- Investigate SOFC cathode microstructures using FIB-nt
 - Quantify various microstructural parameters (phase fractions, connectivity, TPB networks, etc.)
- Quantify changes in high temp. LSM-YSZ cathodes upon aging in humid environment
 - Analyze changes induced by aging conditions, and compare to electrochemical performance
- Quantify changes in intermediate temp. LSCF-GDC cathodes upon aging in H₂O, CO₂, and Cr vapor
 - Again, examine any changes induced by aging conditions, and compare to performance data
- Develop open, repeatable, and documented FIB-*nt* analysis methods
 - Every research group uses its own methods, hindering comparison of results, since specifics of implementations are rarely available; open development of methods is greatly needed

Outline

- Overall introduction
- SiC MOSFET characterization
 - Transition layer measurements
 - XPS interface analysis
 - Effects of crystallographic orientation
- Solid oxide fuel cell reconstructions
 - Intro & Methodology developments
 - LSM-YSZ cathode degradation
 - LSCF-GDC cathode degradation
- Conclusions and Future work

Introduction to FIB-nanotomography

Serial process of cutting and imaging – 2D slices to 3D volume

Experimental and sample preparation

Symmetric cathode fuel cells for EIS testing

8.2 mm

Preparation for FIB/SEM investigation

Polished SOFC sample

Cross section analysis

1 inch

Experimental and sample preparation

Schematic of FIB-nt process

Sample site preparation

Experimental and sample preparation

Finished site preparation

Novel Gradient correction algorithm

THE DEPARTMENT of MATERIALS SCIENCE AND ENGINEERING

Grayscale to 3D volume

• Watershed segmentation method

Normalized image

Segmented data

Calculation of tortuosity (τ)

- Measures added resistance to diffusion introduced by microstructure
- Phase fraction (η) and tortuosity (τ) determine effective diffusivity:

(Kim, 1999)

$$D_{\rm eff} = \frac{\eta}{\tau} D$$

• This work uses geometric tortuosity: (Gommes, 2009)

 $\tau = \lim_{L_{\rm G}, L_{\rm E} \to \infty} \frac{\text{Geodesic distance}}{\text{Euclidean distance}}$

TPB network calculation

- Oxygen reduction can only occur at or near TPB points
- Implemented a smoothed edgecounting method
 - Significantly more accurate than methods used in present literature
- Developed in collaboration with Scientific Applications and Visualization Group (NIST)
- Analyze expected activity of TPB points by their connectivity

Visualization of LSM-YSZ reconstruction

LSM-YSZ SOFC Composite Cathode **FIB/SEM Reconstruction**

J.Taillon & L. Salamanca-Riba w/C.Pellegrinelli, Y. Huang, & E. Wachsman University of Maryland

Outline

- Overall introduction
- SiC MOSFET characterization
 - Transition layer measurements
 - XPS interface analysis
 - Effects of crystallographic orientation
- Solid oxide fuel cell reconstructions
 - Intro & Methodology developments
 - LSM-YSZ cathode degradation
 - LSCF-GDC cathode degradation
- Conclusions and Future work

LSM-YSZ aging conditions

- Four composite cathodes aged in varying conditions:
 - Air
 - Air cathodic polarization
 - $3\% H_2O$ anodic polarization
 - 3% H₂O cathodic polarization
- Aged for 500 h at 800°C (-0.7V potential)
- FIB/SEM analysis performed post-aging
 - Total volumes reconstructed range from $2000 6400 \ \mu m^3$

H₂O-Cathodic Reconstruction

LSM-YSZ microstructural results

• Quantified:

- Phase volume information
- Phase distribution
- Connectivity
- Tortuosity
- Triple phase boundary information

Fewer active TPBs in H₂O-Cathodic

LSM-YSZ microstructural result summary

- Generally, only H₂O-Cathodic sample any significant alterations to microstructure
 - Larger YSZ particles, least connected LSM, and lowest fraction of active TPBs
- Otherwise, little to no changes in microstructure
 - Phase fractions, phase distributions, tortuosity, and connectivity relatively unchanged by polarization and H₂O (using the conditions in this study)
- To stimulate degradation of microstructure, more extreme conditions needed
 - Longer aging times, varied temperatures, higher H₂O concentrations, etc.

Relationship to electrochemical performance

- Electrochemical impedance spectroscopy (EIS) data collected by collaborators in the Wachsman Lab
 - Both constant aging and condition cycling tests performed
- Generally, observed changes in performance were reversible
 - Suggests kinetic effects, rather than microstructural ones
 - Reversible changes cannot be measured by FIB/SEM

- H₂O-Cathodic experienced *enhanced* performance during humidification
 - Effect was reversible, however
 - TEM chemical analysis reveals some clues as to origin of improvement

H₂O-aged LSM-YSZ TEM-EDS analysis

- TEM-EDS analysis of YSZ grain boundaries
- Mn and La cations observed to migrate to YSZ boundaries and surfaces
- These species are volatile during aging, and distribution suggest surface diffusion
- No evidence of significant
 secondary phase formation

Data courtesy of FEI Company

H₂O-aged LSM-YSZ TEM-EELS analysis

- Mn-L_{2,3} EELS edge reveals information about Mn atoms
- Like EDS, EELS reveals high concentration of Mn at YSZ grain boundaries/surfaces
 - Observed regardless of applied polarization bias in humid samples
- L₃/L₂ ratio indicates average valence of Mn^{2.5+}

(Backhaus-Ricoult, 2006 & Shih, 2011)

• Also will contribute to V₀^{••} formation

H₂O-aged LSM-YSZ TEM-EELS analysis

 First experimental evidence of Nielsen's proposed LSM-YSZ/H₂O degradation mechanism

(Nielsen & Mogensen, 2011)

- Proposed formation of volatile Mn²⁺ species under humidification, but no experimental evidence
- Enhances performance in the shortterm, but leads to long term loss of ISM-YS7 interface

H₂O-aged LSM-YSZ TEM-EELS analysis

- O-K EELS edge from triple phase boundary region
- Clear surface state, with spectrum representative of O-deficient oxide
 - Evidence of a high oxygen vacancy concentration in LSM
- High V₀^{••} encourages oxygen incorporation at surfaces
 - Likely a source of kinetic enhancements observed with humidification during EIS

LSM-YSZ degradation summary

- Overall, few changes in microstructure at conditions tested
 - H₂O-Cathodic evidenced some changes, but not enough to degrade performance compared with kinetic enhancement effects
- Significant migration of La and Mn in humid samples
 - Regardless of applied polarization bias, La and Mn were observed at grain boundaries using both EDS and EELS, also creating an abundance of V₀^{••}

Mn^{≈2+} measured by EELS, confirming Nielsen mechanism

 Indicates that observed humidity enhancement is likely a temporary effect, and continued aging would induce degradation of the TPB boundaries

Outline

- Overall introduction
- SiC MOSFET characterization
 - Transition layer measurements
 - XPS interface analysis
 - Effects of crystallographic orientation
- Solid oxide fuel cell reconstructions
 - Intro & Methodology developments
 - LSM-YSZ cathode degradation
 - LSCF-GDC cathode degradation
- Conclusions and Future work

LSCF-GDC aging conditions

- Seven composite cathodes aged in varying conditions:
 - Air cathodic polarization
 - 3% H₂O no applied bias
 - 3% H₂O cathodic polarization
 - 5% CO₂ no applied bias
 - 5% CO₂ cathodic polarization
 - Cr-vapor sintered at 950 °C
 - Cr-vapor sintered at 1080 °C
- Aged for 500 h (200 h for Cr samples) at 750°C
- FIB/SEM analysis performed post-aging
 - Total volumes reconstructed range from 16,000 70,000 μm³
 - Order of magnitude larger than existing literature

Cr-1080°C Reconstruction 70,244 μm³

LSCF-GDC Chromium impacts

• Sintering temperature drastically affects Cr-phase formation

Collected images

Segmented data

1.9% Cr phase (by volume)

Sintering temperature drastically

affects Cr-phase formation

LSCF-GDC Chromium impacts

•

LSCF-GDC Chromium impacts

 Lower sintering temperature = lower pore sizes → greater S.A.

	Average pore size	
950°C	712 nm	
1080°C	891 nm	

Results indicate a gaseous Cr reaction mechanism at particle surfaces

• Cr-phases have double the contact area with LSCF vs. GDC

Relationship to electrochemical performance

• Chromium poisoning:

- Irreversible increases in Ohmic and Polarization resistances
- 6x greater losses for 950 °C than 1080 °C
- Correlates to greater Cr-phase content in lower temperature sample

• H₂O exposure

- Like LSM-YSZ, slight enhancement; most changes in performance reversible
- Irreversible increase in Ohmic resistance attributed to electrolyte sintering
 - Correlates with increased GDC particle sizes in H₂O samples

• CO₂ exposure

- Compared to H₂O, similar (but smaller) changes that were mostly irreversible
- May correlate with decrease in active TPB fraction, but not conclusive
- On/off nature of tests complicates analysis of results

Review of SOFC experiments

- Developed novel algorithms and methodology to improve FIB-*nt* quantification
 - Software made available in public repository for use by the scientific community
- FIB-nt and TEM-EDS/EELS analysis of LSM-YSZ composite cathode degradation
 - Little significant degradation observed in microstructure for conditions tested
 - Mobile Mn and La cations observed under humidification; agreement with Nielsen model of degradation
- FIB-nt analysis of LSCF-GDC in H₂O, CO₂, and Cr vapor
 - Again, few significant changes in H₂O, slightly more in CO₂
 - Cr poisoning causes substantial change in phase content; Cr-phase formation correlated with drop in electrochemical performance

Outline

- Overall introduction
- SiC MOSFET characterization
 - Transition layer measurements
 - XPS interface analysis
 - Effects of crystallographic orientation
- Solid oxide fuel cell reconstructions
 - Intro & Methodology developments
 - LSM-YSZ cathode degradation
 - LSCF-GDC cathode degradation
- Conclusions and Future work

Remaining questions for SiC

• Continued investigation of boron and phosphorus annealed oxides

- Results presented here are just the very surface
- Can these oxides be tailored to improve performance, and how do the oxide characteristics change?

• Analysis of substrate strain at the interface

- Could have significant effects on performance of devices, but little is known
- Do the various processing conditions change the strain substantially?
- How does *a*-face compare to Si-face?

Remaining questions for SOFC degradation

- Similar analysis as presented here, but with systematic degradation
 - This work provides clues as to degradation pathways, but without clear evidence of degradation, correlations to microstructure are difficult
 - Comparison of different aging times, changing concentration of contaminant, etc.
- Further analysis of Cr degradation products
 - Literature typically assumes only SrCrO₄
 - More complicated secondary phases were observed in initial TEM-EELS studies of the Cr-aged samples
 - Can provide a more detailed picture of *how* Cr reduces performance kinetically, as well as in microstructure

Interesting future methodology questions

- Applicability and development of EELS spectral unmixing methods
 - Important to develop a physical framework for understanding component results
 - NMF works well, but Bayesian Linear Unmixing (BLU) is a promising alternative (with little existing research)
- FIB-nanotomography enhancements:
 - Application of machine learning algorithms to image segmentation
 - More focused acquisition of only area of interest (speed up of data collection)
 - Compressive sensing acquisition of data (again, to increase speed)

Products of thesis research

Refereed manuscripts (published, submitted, and in preparation):

- 1 J. Taillon, J. Yang, C. Ahyi, J. Rozen, J. Williams, L. Feldman, T. Zheleva, A. Lelis, and L. Salamanca-Riba, "Systematic structural and chemical characterization of the transition layer at the interface of NO-annealed 4H-SiC/SiO2 metal-oxide-semiconductor field-effect transistors", *Journal of Applied Physics*, vol. 113, no. 4, p. 044 517, 2013.
- 2 J. Taillon, J. Hagedorn, C. Pellegrinelli, Y. Huang, E. Wachsman, L. Salamanca-Riba, "Improving microstructural quantification in FIB/SEM nanotomography", To be submitted to *Ultramicroscopy*, 2016.
- 3 J. Taillon, K. Gaskell, and L. Salamanca-Riba, "Refinement of a spin-etch technique for precise depth profiling of oxide films," *In preparation*.
- 4 J. Taillon, K. Gaskell, G. Liu, L. Feldman, S. Dhar, T. Zheleva, A. Lelis, and L. Salamanca-Riba, "TEM-EELS detection of unique interfacial states at NO-annealed 4H-SiC/SiO2 interfaces," *In preparation*.
- 5 J. Taillon, S. Dhar, T. Zheleva, A. Lelis, and L. Salamanca-Riba, "Nanoscale characterization of gate oxides in phosphorus and boron passivated 4H-SiC MOSFETs," *In preparation*.
- 6 D. Gostovic, J. Taillon, J. Smith, N. Vito, K. O'Hara, K. Jones, and E. Wachsman, "Comprehensive quantification of porous LSCF cathode microstructure and electrochemical impedance," Submitted to *Journal of the Electrochemical Society*, 2016.
- 7 C. Xiong, C. Pellegrinelli, J. Taillon, Y. Huan, L. Salamanca-Riba, and E. Wachsman, "Long-term Cr poisoning effect on LSCF-GDC composite cathodes sintered at different temperatures," Accepted to *Journal of the Electrochemical Society*, 2016.

Products of thesis research

Proceedings publications:

- 1 J. Taillon, C. Pellegrinelli, Y. Huang, E. Wachsman, and L. Salamanca-Riba, "Three dimensional microstructural characterization of cathode degradation in SOFCs using focused ion beam and SEM," *ECS Transactions*, **61**, 1, 109, 2014.
- 2 C. Pellegrinelli, Y. Huang, J. Taillon, L. Salamanca-Riba, and E. Wachsman, "A study of SOFC cathode degradation in H2O environments," *ECS Transactions*, **64**, 2, 17, 2014.
- J. Taillon, K. Gaskell, G. Liu, L. Feldman, S. Dhar, T. Zheleva, A. Lelis, and L. Salamanca-Riba, "Characterization of the oxide-semiconductor interface in 4H-SiCSiO2 structures using TEM and XPS," *Microscopy and Microanalysis*, **21**, S3, 1537, 2015.
- 4 J. Taillon, C. Pellegrinelli, Y. Huang, E. Wachsman, and L. Salamanca-Riba, "Three dimensional microstructural characterization of cathode degradation in SOFCs using FIB/SEM and TEM," *Microscopy and Microanalysis*, **21**, S3, 2161, 2015.

Presentations:

1 Approximately 20 contributed/invited presentations from 2012 – 2016 at *Materials Research Society* meetings, *American Physical Society* meetings, *Microscopy & Microanalysis*, as well as a number of smaller research seminars and symposia.

"Extracurricular Activities"

- Evaluation, analysis, and recommendations for UMD FIB/SEM acquisition
 - Resulted in purchase of two Tescan FIB/SEM systems in the AIMLab
- Public release of software tools developed in this research:
 - Available in public repository:

Martel Down Down				terrer i Binner (MA) in	
	0			(a) (1996) (and (1996) (and (1996)	
	income distant income fate sciences fate	-			
	NEADME	A server a server of the server server as a server as a server as a server as a server server as a ser			
	Long in FORDER and Annual and Annual An				
	1200				
	A - Summary - Scaling A - Scaling - S				
	 - Second eventual califier in such a parameter - Second eventual eventual califier in such as a second eventual califier			M Canen	

https://bitbucket.org/jat255/jat255-python-modules

Active contributor to HyperSpy:

https://github.com/hyperspy/hyperspy

"Extracurricular Activities"

- Frequent collaboration and characterization assistance with members of the Maryland community:
 - C. Preston, D. Song, J. Taillon, J. Cumings, L. Hu, "Boron-Doped Few-Walled Carbon Nanotubes: Novel Synthesis and Properties", Submitted to *Nanotechnology* (2016).
 - H. Bai, J. Taillon, L. Salamanca-Riba, "Anisotropically Shaped CdS_xSe_{1-x} Pseudobinary Semiconductor Nanocrystals", Submitted to *Chemistry of Materials* (2016).
 - C. Gong, M. Dias, G. Wessler, J. Taillon, L. Salamanca-Riba, and M. Leite, "Fully Alloyed Noble Metal Nanoparticles via Physical Deposition for Plasmonics", Submitted to Advanced Optical Materials (2016).

Acknowledgments

Funding/Support

Graduate Research Fellowship Program DGE 1322106

W911NF-11-2-0044

SECA - DEFE 0009084

Backscatter electron image of PSG on SiC, after 2 minutes of patterning with the Gaia FIB (20pA current). Image contrast arises from the mass difference caused by Ga implantation into the sample

Facilities/Assistance

Scientific Applications & Visualization Group

John Hagedorn

Josh Schumacher

Acknowledgments

Committee

Lourdes Salamanca-Riba Eric Wachsman Tsvetanka Zheleva Neil Goldsman John Cumings

Backscatter electron image of PSG on SiC, after 2 minutes of patterning with the Gaia FIB (20pA current). Image contrast arises from the mass difference caused by Ga implantation into the sample

SiC Collaborators

Aivars Lelis Tsvetanka Zheleva Neil Goldsman Leonard Feldman Sarit Dhar

SOFC/SECA Collaborators

Eric Wachsman Chris Pellegrinelli Yilin Huang

> Dan Gostovic Nick Vito