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Why Microscopy?

Seeing is believing!

GeoSafari 8x optical JWST Infrared telescope First TEM (Ruska and Knoll)
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(Very) Brief introduction to TEM

● Fundamentally similar to  transmitted light microscopy

● Electrons rather than photons
─ Better resolution!
─ Electromagnetic lenses, rather than glass lenses

● Easily combined with analytical techniques (EDS, EELS, etc.)
─ Enables chemical analysis together with structural information
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(Very) Brief introduction to TEM

JEOL JEM-2100F TEM Schematic Electron-sample interactions
(adapted from Williams and Carter, 2009)

t < 100 nm

3

0.2 nm 
resolution



(Very) Brief introduction to TEM-EELS

Electron 

Energy

Loss 

Spectroscopy

EELS energy band schematic
(Williams and Carter, 2009)
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(Very) Brief introduction to TEM-EELS
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(Very) Brief introduction to Focused Ion Beams (FIB)

● Scan a finely focused beam of ions across a sample
─ Very similar to SEM technique

● Heavy ions rather than electrons
─ Worse resolution, but more interactions
─ Electrostatic lenses, rather than electromagnetic 

● Combined with SEM, enables almost unparalleled analytical capabilities
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(Very) Brief introduction to FIB/SEM

Typical SEM configuration Dual-beam FIB/SEM configuration
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(Very) Brief introduction to FIB/SEM

Dual-beam FIB/SEM configuration

SEM

Micro-
manipulator

EDS
detector

Sample
chamber

TOF-SIMS

GIS

Ga+

FIB

Tescan Gaia FIB at UMD
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In situ cross sections

65nm IC cross section

FEI Company (2016)

Unique capabilities of FIB/SEM

T. Hoshino et al., EIPBN (2003)

“Nano-trek”

Material deposition TEM Sample Prep

In situ liftout technique
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Introduction to wide bandgap (WBG) materials

 What is a WBG?

 Electronic materials beyond silicon

 Semiconductor with Eg > 3 eV

 Example properties:

4H-SiC GaN Silicon

Eg  (eV) 3.26 3.39 1.12

µe

(cm2/V s)
900 1600 1400

Critical field 
(MV/cm)

3 – 5 5 0.3

Thermal cond.
(W/cm K)

3.7 1.3 1.3

 Why WBG materials?

 Good mobilities

 High critical fields

 High thermal conductivity

 Useful where silicon is limited

Can block high voltage

Efficient heat removal

Fast switching
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 Native oxide
 SiO2 grows natively
 Easily integrates with existing 

processes

 Lighter, more efficient than Si in 
high power applications

Why silicon carbide (SiC)?



SiC structure(s)

● SiC has over 250 polymorphs
─ Determined by stacking sequence
─ 4H is the most relevant for electrical 

devices
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Why not silicon carbide (now)?

Interface trap density vs. energy
(Adapted from Schörner, 1999)

Vth shift after bias stressing
(Lelis, 2015)

 High cost
 3” wafer $2,000 

(compared to $60 for Si)

 Low device mobility
 Interface traps limit µe in 

inversion layer
 Device µe 1% of bulk 

value 

 Limited device 
reliability
 Threshold (“on”) voltage 

shifts with bias and 
temperature stress
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What can be done?

SiC MOSFET µe before/after NO-annealing
(Dhar, 2006)

 NO post-oxidation anneal
 Developed in the late 1990s at Auburn, 

Vanderbilt, and Rutgers Universities

 Significantly higher mobilities
 Order of magnitude improvement
 Has enabled commercialization of SiC 

components (Wolfspeed, Rohm, etc.) 

 How does it work?
 Incorporation of N close to SiC/SiO2

interface
 Passivation of mobility-limiting defects
 N also introduces hole traps causing 

negative bias-temperature instability 
(reliability concern)
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What is happening at the interface? (prior research)

Transition layers at SiC/SiO2 interface
(Zheleva, 2008)

Excess
carbon
measured
with EELS

8
.1

 n
m

No “transition layer”, just roughness of 
about 2 nm

No excess carbon measured by EELS
(Liu, 2014)

HRTEM & EELS

HR-STEM & EELS
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Problem!

WTL = [5 – 20] nm

WTL = 0.3 nm /  no 
interfacial state

≠ Why the 
discrepancy?

 EELS evidence of enhanced C 
concentration in SiC at interface
 T. Zheleva, et al. Appl. Phys. Lett. 93, 022108 (2008).

 Transition layer narrows with NO post-
anneal
 T. Biggerstaff, et al. Appl. Phys. Lett. 95, 032108 (2009).

 Angle resolved XPS of interfacial state
 L. I. Johansson, et al., Surf. Sci. 529, 515–526 (2003).

 HR-STEM focal reconstruction of structure
 Measured a few monolayers of roughness and attributed the 

transition region solely to structural effects
 P. Liu, et al. J. Vac. Sci. Technol. A, 32, 060603 (2014). 
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Goals of this Research

● Investigate the 4H-SiC/SiO2 interface and resolve its structure
─ Discrete transition layers, or no? Size of the layers? Bonding states at the interface?
─ Aim to contribute definitive evidence of the interfacial structure

● Corroborate EELS and XPS measurements
─ Measurements by the two techniques give very different results, but the methods have never been 

combined in one report from the same research group

● Analyze the effects of substrate orientation and roughness
─ What is the origin of the drastically improved mobility on the a-face?
─ Does roughness at the interface affect the interfacial chemical states?
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Experimental design

 Six (6) SiC/SiO2 MOSFET devices

 (0001) 4° miscut Si-face wafer substrate

 NO post-oxidation anneal (0 – 240 minutes)

 µ increases with NO-anneal time

 FIB/SEM extraction of TEM lamellae from gate region
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HRTEM of the SiC/SiO2 interface

 Structurally, no large distinct 
transition layers

 Compare to Zheleva et al.:

4H-SiC/SiO2 interface from 60 minute NO-annealed MOSFET device
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EELS Spectrum Imaging

STEM survey image at interface

EELS spectrum collected at each point

STEM signal measured at each point

SiC SiO2
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EELS Spectrum Imaging

STEM survey image at interface

EELS spectrum collected at each point

SiC SiO2
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Chemical shift of Si-L2,3
 Onset energy of edge reflects the 

bandgap
 Probes bonding configuration of 

silicon atoms
 Measure onset energy across 

interface
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wTL results (Chemical shift method)

wTL decreases with NO anneal time

Exponential 
decay

wTL inversely 
correlated 

with µe
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NO Annealing summary

● Little structural evidence (HRTEM) for distinct TL
─ HRTEM suggests only 1 nm or so, but chemical evidence contradicts this

● No excess carbon at any of the interfaces
─ In agreement with a number of recent works, and contradicting older (before 2008) studies

● wTL decreases with NO anneal time, N-coverage, and mobility
─ Si-L2,3 chemical shift method developed as most reliable metric of wTL

● NO-anneal chemically “sharpens” interfacial area

Results published in J. Applied Physics: 
J. Taillon, L. Salamanca-Riba, et al., J. Appl. Phys. 113, 044517 (2013)
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Motivation for XPS experiments

● Previous experiment only showed changes in size of TL
─ No specific information about what is changing chemically

● General disagreement in literature between EELS and surface techniques
─ First study to directly compare the two methods

● Prior SiC XPS works have not maintained fidelity of interface
─ Etch all the way to substrate
─ Measure interface during growth
─ Sputter profile – physically alters interface
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Experimental design

 Four SiC/SiO2 MOSFET devices
 (0001) 4° miscut Si-face wafer substrate
 55 nm gate oxides
 2 samples only oxidized
 2 with 2hr NO post-anneal
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Spin-etch technique

● Adopted from Si/SiO2 literature
─ F. J. Grunthaner, P. J. Grunthaner, et al., J. Vac. Sci. Technol., 16, 1443 (1979)

● Drip HF etchant onto spinning substrate
─ Careful introduction of etchant allows fine control of etch rate
─ No additional contamination/damage to interface

● Demonstrated sub-nm uniform etch control:

24



Brief XPS Review

● X-ray Photoelectron Spectroscopy

● Utilizes photoelectric effect to 
measure binding energy of 
electrons within 5 – 10 nm of 
sample surface

─ X-rays in → electrons out
─ Spectrum of binding energies

● Can measure:
─ Atomic composition
─ Chemical states at the surface
─ Species and orbital-specific information
─ Depth information with angle-resolved 

measurements

High resolution
scan
 Chemical 

information
 Component 

deconvolution

Elemental 
survey scan
 Overall 

composition
 Auger and 

core peaks
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wTL from angle resolved XPS

● Thickness of thin films can be 
measured by comparing signal 
intensities at different angles

─ “Attenuation model” (Johansson, 2003)
─ Integrate interface intensity and compare to SiC-

substrate intensity

● Results:

Integrated 
intensities

Atomic conc.
of silicon

Measurement
angle

Attenuation
length of e-

Interface
thickness

winterface

Oxidized 2.9 nm

NO Anneal 1.6 nm

26

 Spatial distribution of interfacial signal 
changes with NO anneal

 Similar wTL to those measured by EELS
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Motivation for orientation experiments

● Origins for mobility enhancement 
on a-face are poorly understood 

● Roughness from miscut angle is 
known to reduce mobility

─ Does it have a substantial effect 
on the interface chemistry as 
well?

● Does NO anneal operate in a 
different manner for the a-face 
compared to the Si-face?

Mobility of a-face vs. Si-face
(Liu, 2013)

SiC crystal face orientations
(Adapted from Dhar, 2005)
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Experimental design

 Six SiC/SiO2 MOSFET devices
 2 (0001) 4° miscut Si-face devices
 2 (0001) on-axis Si-face devices
 2 (1120) a-face devices
 ≈ 60 nm gate oxides
 For each orientation, 1 sample just oxidized; 

1 with 2hr NO post-anneal
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HRTEM of different orientations

 Miscut steps evident

 Few steps in on-axis 
samples

 No clear structural 
transition region (like 
previous results)
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What is at the interface?

SiO2Int.SiC

EELS Spectrum Image

Si-L2,3 ELNES signal

Linear combination?
Or something more?
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Hyperspectral decomposition (or unmixing)

● Technique to recover multiple unknown signals from a spectrum image

● Consider a spectrum image as a matrix, and use matrix decomposition:

Total 
spectrum image

Where is
each signal 

located?

What does
each signal
look like?
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Hyperspectral decomposition (or unmixing)

● Technique to recover multiple unknown signals from a spectrum image

● Consider a spectrum image as a matrix, and use matrix decomposition:

● Any number of decomposition strategies can be used
─ Non-negative Matrix Factorization (NMF) is very suitable for EELS data
─ Unbiased; unsupervised; only assumption is positivity of data

Original spectrum
image Position Energy

Score “maps”
Component

number

Loading spectra
(eigenvalues)
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Unmixing of Si-L2,3 EELS signal

Oxidized NO Anneal

 No significant variation 
between different orientations
 a-face results shown

 NO anneal gives rise to 
interfacial state in all samples
 No such state in samples 

only oxidized 
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Si-L2,3 Interface – Evidence of N bonding

Comparison to Si3N4 literature 
(Skiff, 1987)

Comparison of interface 
components to measured Si3N4

Reduced edge 
onset for a-face
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Unmixing of C-K EELS signal

NO Anneal

 NO anneal gives rise to interfacial 
state in all samples
 No such state in samples only 

oxidized 

 Pre-edge intensity indicative of sp2

bonding, rather than sp3

 Often observed in C-N 
configurations 

 Strong presence of N in carbon 
bonds

Interfacial nitrogen’s 
effects observed in Si and 

C signals, in all samples
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Unmixing of O-K EELS signal

a-face NO Anneal

 Only sample with interfacial 
component was a-face with NO 
anneal

 Interface has edge onset 2-3 eV 
lower than SiO2

 Reduced bandgap
 Increased dielectric constant
 Enhanced mobility

 Likely part of the drastically 
enhanced mobility on the a-face
 Silicon/carbon oxynitride

configuration

35



Crystallographic orientation summary

● Confirmation of Si3N4-like bonding, measured at Si-L2,3 edge
─ Further agreement between EELS and XPS results
─ Miscut/roughness alone does not appear to alter chemical states

● Carbon bonds have sp2 character in NO annealed devices (C-K edge) 
─ Signals the N bonds to both Si and C 

● Distinct oxygen interfacial signal only in NO annealed a-face device
─ a-face enables additional bonding configurations that affect the oxide signal
─ Nanometer scale region of reduced bandgap likely origin of enhanced mobility in such orientations
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Review of SiC experiments

● wTL measurement in NO-anneled SiC/SiO2 devices
─ Smaller transition layer width correlated with improved device mobility

● Angle resolved XPS exploration of interfacial states
─ wTL measured by XPS corroborates EELS measurements

● Substrate orientation investigation
─ Miscut of Si-face does not appreciably alter chemical states (just adds roughness)
─ NO anneal creates distinct interfacial bonding state for Si and C in all samples
─ NO anneal only creates interfacial state for O in the a-face sample, proposed as the origin of 

enhanced mobility
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Introduction to solid oxide fuel cells (SOFCs)

● SOFCs provide clean, energy efficient 
energy conversion

─ Flexible fuels, low emissions, up to 90% efficient 
(in combined heat & power applications)

● Operational basics:
─ Oxidation of fuel(s) at the anode:

─ Reduction of air (O2) at the cathode:

“Bloom Box” Redox “Cube”
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Challenges facing SOFCs

● Widespread commercialization has still not 
been achieved

─ High temperature / operation costs
─ Overall system costs high
─ Performance degradation (limited durability)

● Cathode polarization losses due to degradation
─ Longer term effects such as coarsening, secondary phase 

formation, etc. reduce performance
─ H2O, CO2, and Cr vapor can accelerate performance 

losses (Nielsen, 2011)

─ Adverse effects on polarization, conductivities, and 
activation (Adler, 2004)

Cathode 
degradation is 

biggest problem
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Origins of performance degradation

● Within the cathode, both kinetics and 
microstructure control ultimate 
performance

─ Generally: 
● Kinetics → transient effects
● Microstructure → permanent effects

● Microstructure can be studied (and 

quantified) with FIB/SEM
─ FIB-nanotomography:

● TPB quantification and activity – J. R. Wilson, et al., 

Nat. Mater. 5, 541 (2006).

● Correlation to cell performance – J. R. Smith, et al., 

Solid State Ionics 180, 90 (2009).
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SOFC cathode materials

● Two types of SOFC devices systems with composite cathode layers
─ Composite cathode: both electrolyte (ion conducting) and cathode (electron conducting) 

materials are mixed and sintered together to form a composite structure

(Y2O3)0.08(ZrO2)0.92

(La0.8Sr0.2)0.95MnO3+δ

1)     LSM: 



 Perovskite structure
 Pure electronic conductor
 High temperature applications
 Well matched with YSZ 

electrolyte: (Gd2O3)0.2(CeO2)0.8

(La0.6Sr0.4)0.95(Co0.2Fe0.8)O3-δ

2) LSCF: 



 Perovskite structure
 Mixed ionic electronic conductor
 Intermediate temperature applications
 Well matched with GDC 
 electrolyte: 
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Goals of this Research

● Investigate SOFC cathode microstructures using FIB-nt
─ Quantify various microstructural parameters (phase fractions, connectivity, TPB networks, etc.)

● Quantify changes in high temp. LSM-YSZ cathodes upon aging in humid 
environment

─ Analyze changes induced by aging conditions, and compare to electrochemical performance

● Quantify changes in intermediate temp. LSCF-GDC cathodes upon aging in H2O, 
CO2, and Cr vapor

─ Again, examine any changes induced by aging conditions, and compare to performance data

● Develop open, repeatable, and documented FIB-nt analysis methods
─ Every research group uses its own methods, hindering comparison of results, since specifics of 

implementations are rarely available; open development of methods is greatly needed
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Introduction to FIB-nanotomography

 Serial process of cutting and imaging – 2D slices to 3D volume

y

z
x
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Experimental and sample preparation

Symmetric cathode fuel 
cells for EIS testing

Preparation for FIB/SEM 
investigation

Cross section analysis
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Experimental and sample preparation

Schematic of FIB-nt process Sample site preparation
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Experimental and sample preparation

Finished site preparation Example raw collected slice

YSZ

LSM

Pore
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Bulk 
YSZ 

electrolyte



Novel Gradient correction algorithm
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Grayscale to 3D volume 

● Watershed segmentation method 

Segmented dataNormalized image
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Calculation of tortuosity (τ)

 Measures added resistance to 
diffusion introduced by 
microstructure

 Phase fraction (η) and tortuosity (τ)
determine effective diffusivity:
(Kim, 1999)

 This work uses geometric tortuosity:
(Gommes, 2009)
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TPB network calculation

 Oxygen reduction can only occur 
at or near TPB points

 Implemented a smoothed edge-
counting method
 Significantly more accurate than 

methods used in present literature

 Developed in collaboration with 
Scientific Applications and 
Visualization Group (NIST)

 Analyze expected activity of TPB 
points by their connectivity
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Visualization of LSM-YSZ reconstruction
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LSM-YSZ aging conditions

 Four composite cathodes aged in varying 
conditions:
 Air
 Air – cathodic polarization
 3% H2O – anodic polarization
 3% H2O – cathodic polarization

 Aged for 500 h at 800°C (-0.7V potential)

 FIB/SEM analysis performed post-aging
 Total volumes reconstructed range from 

2000 – 6400 μm3

H2O-Cathodic Reconstruction
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LSM-YSZ microstructural results

 Quantified:
 Phase volume 

information
 Phase distribution
 Connectivity
 Tortuosity
 Triple phase boundary 

information

Fewer active TPBs in H2O-Cathodic
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LSM-YSZ microstructural result summary

● Generally, only H2O-Cathodic sample any significant alterations to 
microstructure

─ Larger YSZ particles, least connected LSM, and lowest fraction of active TPBs

● Otherwise, little to no changes in microstructure
─ Phase fractions, phase distributions, tortuosity, and connectivity relatively unchanged by polarization 

and H2O (using the conditions in this study)

● To stimulate degradation of microstructure, more extreme 
conditions needed

─ Longer aging times, varied temperatures, higher H2O concentrations, etc.
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Relationship to electrochemical performance

 Electrochemical impedance 
spectroscopy (EIS) data collected by 
collaborators in the Wachsman Lab
 Both constant aging and condition 

cycling tests performed

 Generally, observed changes in 
performance were reversible
 Suggests kinetic effects, rather than 

microstructural ones
 Reversible changes cannot be 

measured by FIB/SEM

 H2O-Cathodic experienced enhanced 
performance during humidification
 Effect was reversible, however
 TEM chemical analysis reveals some 

clues as to origin of improvement
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H2O-aged LSM-YSZ TEM-EDS analysis

Data courtesy of FEI Company

 TEM-EDS analysis of YSZ grain 
boundaries

 Mn and La cations observed to 
migrate to YSZ boundaries and 
surfaces

 These species are volatile during 
aging, and distribution suggest 
surface diffusion

 No evidence of significant 
secondary phase formation
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H2O-aged LSM-YSZ TEM-EELS analysis

 Mn-L2,3 EELS edge reveals information 
about Mn atoms

 Like EDS, EELS reveals high 
concentration of Mn at YSZ grain 
boundaries/surfaces
 Observed regardless of applied 

polarization bias in humid samples

 L3/L2 ratio indicates average valence of 
Mn2.5+

(Backhaus-Ricoult, 2006 & Shih, 2011)

 Also will contribute to VO
•• formation
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H2O-aged LSM-YSZ TEM-EELS analysis

 First experimental evidence of 
Nielsen’s proposed LSM-YSZ/H2O 
degradation mechanism
(Nielsen & Mogensen, 2011)

 Proposed formation of volatile Mn2+

species under humidification, but 
no experimental evidence 

 Enhances performance in the short-
term, but leads to long term loss of 
LSM-YSZ interface
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H2O-aged LSM-YSZ TEM-EELS analysis

 O-K EELS edge from triple phase 
boundary region

 Clear surface state, with spectrum 
representative of O-deficient oxide
 Evidence of a high oxygen vacancy 

concentration in LSM

 High VO
•• encourages oxygen 

incorporation at surfaces
 Likely a source of kinetic 

enhancements observed with 
humidification during EIS
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LSM-YSZ degradation summary

● Overall, few changes in microstructure at conditions tested
─ H2O-Cathodic evidenced some changes, but not enough to degrade performance compared with 

kinetic enhancement effects

● Significant migration of La and Mn in humid samples
─ Regardless of applied polarization bias, La and Mn were observed at grain boundaries using both EDS 

and EELS, also creating an abundance of VO
••

● Mn≈2+ measured by EELS, confirming Nielsen mechanism
─ Indicates that observed humidity enhancement is likely a temporary effect, and continued aging 

would induce degradation of the TPB boundaries
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LSCF-GDC aging conditions

 Seven composite cathodes aged in varying 
conditions:
 Air – cathodic polarization
 3% H2O – no applied bias
 3% H2O – cathodic polarization
 5% CO2 – no applied bias
 5% CO2 – cathodic polarization
 Cr-vapor – sintered at 950 °C 
 Cr-vapor – sintered at 1080 °C 

 Aged for 500 h (200 h for Cr samples) at 750°C 

 FIB/SEM analysis performed post-aging
 Total volumes reconstructed range from 16,000 –

70,000 μm3

 Order of magnitude larger than existing literature
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LSCF-GDC Chromium impacts ● Sintering temperature drastically 
affects Cr-phase formation

Collected images Segmented data

6.4% Cr phase
(by volume)

1.9% Cr phase
(by volume)
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LSCF-GDC Chromium impacts ● Sintering temperature drastically 
affects Cr-phase formation

Collected images Segmented data
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LSCF-GDC Chromium impacts

64

0.88 μm2/μm3
0.46 μm2/μm3

950°C sample

● Cr-phases have double the contact 
area with LSCF vs. GDC

Results indicate a gaseous Cr reaction 
mechanism at particle surfaces

● Lower sintering temperature = lower 
pore sizes → greater S.A.

Average pore size

950°C 712 nm

1080°C 891 nm



 Chromium poisoning:
 Irreversible increases in Ohmic and Polarization resistances
 6x greater losses for 950 °C than 1080 °C 
 Correlates to greater Cr-phase content in lower temperature sample

 H2O exposure
 Like LSM-YSZ, slight enhancement; most changes in performance reversible
 Irreversible increase in Ohmic resistance attributed to electrolyte sintering

 Correlates with increased GDC particle sizes in H2O samples

 CO2 exposure
 Compared to H2O, similar (but smaller) changes that were mostly irreversible
 May correlate with decrease in active TPB fraction, but not conclusive
 On/off nature of tests complicates analysis of results
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Review of SOFC experiments

● Developed novel algorithms and methodology to improve FIB-nt
quantification 

─ Software made available in public repository for use by the scientific community

● FIB-nt and TEM-EDS/EELS analysis of LSM-YSZ composite cathode 
degradation

─ Little significant degradation observed in microstructure for conditions tested
─ Mobile Mn and La cations observed under humidification; agreement with Nielsen model of 

degradation

● FIB-nt analysis of LSCF-GDC in H2O, CO2, and Cr vapor
─ Again, few significant changes in H2O, slightly more in CO2

─ Cr poisoning causes substantial change in phase content; Cr-phase formation correlated with drop in 
electrochemical performance
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Outline

 Overall introduction

 SiC MOSFET characterization
 Transition layer measurements
 XPS interface analysis
 Effects of crystallographic orientation

 Solid oxide fuel cell reconstructions
 Intro & Methodology developments
 LSM-YSZ cathode degradation
 LSCF-GDC cathode degradation

 Conclusions and Future work



Remaining questions for SiC

● Continued investigation of boron and phosphorus annealed oxides
─ Results presented here are just the very surface
─ Can these oxides be tailored to improve performance, and how do the oxide 

characteristics change?

● Analysis of substrate strain at the interface
─ Could have significant effects on performance of devices, but little is known
─ Do the various processing conditions change the strain substantially?
─ How does a-face compare to Si-face?
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Remaining questions for SOFC degradation

● Similar analysis as presented here, but with systematic degradation
─ This work provides clues as to degradation pathways, but without clear evidence of 

degradation, correlations to microstructure are difficult
─ Comparison of different aging times, changing concentration of contaminant, etc.

● Further analysis of Cr degradation products
─ Literature typically assumes only SrCrO4

─ More complicated secondary phases were observed in initial TEM-EELS studies of 
the Cr-aged samples

─ Can provide a more detailed picture of how Cr reduces performance kinetically, as 
well as in microstructure
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Interesting future methodology questions

● Applicability and development of EELS spectral unmixing methods
─ Important to develop a physical framework for understanding component results
─ NMF works well, but Bayesian Linear Unmixing (BLU) is a promising alternative 

(with little existing research)

● FIB-nanotomography enhancements:
─ Application of machine learning algorithms to image segmentation
─ More focused acquisition of only area of interest (speed up of data collection)
─ Compressive sensing acquisition of data (again, to increase speed)
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Products of thesis research

1 J. Taillon, J. Yang, C. Ahyi, J. Rozen, J. Williams, L. Feldman, T. Zheleva, A. Lelis, and L. Salamanca-Riba, “Systematic structural and chemical 

characterization of the transition layer at the interface of NO-annealed 4H-SiC/SiO2 metal-oxide-semiconductor field-effect transistors", Journal 

of Applied Physics, vol. 113, no. 4, p. 044 517, 2013.

2 J. Taillon, J. Hagedorn, C. Pellegrinelli, Y. Huang, E. Wachsman, L. Salamanca-Riba, “Improving microstructural quantification in FIB/SEM 

nanotomography”, To be submitted to Ultramicroscopy, 2016.

3 J. Taillon, K. Gaskell, and L. Salamanca-Riba, “Refinement of a spin-etch technique for precise depth profiling of oxide films,” In preparation.

4 J. Taillon, K. Gaskell, G. Liu, L. Feldman, S. Dhar, T. Zheleva, A. Lelis, and L. Salamanca-Riba, “TEM-EELS detection of unique interfacial states at 

NO-annealed 4H-SiC/SiO2 interfaces,” In preparation.

5 J. Taillon, S. Dhar, T. Zheleva, A. Lelis, and L. Salamanca-Riba, “Nanoscale characterization of gate oxides in phosphorus and boron passivated 4H-

SiC MOSFETs,” In preparation.

6 D. Gostovic, J. Taillon, J. Smith, N. Vito, K. O’Hara, K. Jones, and E. Wachsman, “Comprehensive quantification of porous LSCF cathode 

microstructure and electrochemical impedance,” Submitted to Journal of the Electrochemical Society, 2016.

7 C. Xiong, C. Pellegrinelli, J. Taillon, Y. Huan, L. Salamanca-Riba, and E. Wachsman, “Long-term Cr poisoning effect on LSCF-GDC composite 

cathodes sintered at different temperatures,” Accepted to Journal of the Electrochemical Society, 2016.

Refereed manuscripts (published, submitted, and in preparation):
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Products of thesis research

1 J. Taillon, C. Pellegrinelli, Y. Huang, E. Wachsman, and L. Salamanca-Riba, “Three dimensional microstructural characterization of cathode 

degradation in SOFCs using focused ion beam and SEM,” ECS Transactions, 61, 1, 109, 2014.

2 C. Pellegrinelli, Y. Huang, J. Taillon, L. Salamanca-Riba, and E. Wachsman, “A study of SOFC cathode degradation in H2O environments,” ECS 

Transactions, 64, 2, 17, 2014.

3 J. Taillon, K. Gaskell, G. Liu, L. Feldman, S. Dhar, T. Zheleva, A. Lelis, and L. Salamanca-Riba, “Characterization of the oxide-semiconductor 

interface in 4H-SiCSiO2 structures using TEM and XPS,” Microscopy and Microanalysis, 21, S3, 1537, 2015.

4 J. Taillon,  C. Pellegrinelli, Y. Huang, E. Wachsman, and L. Salamanca-Riba, “Three dimensional microstructural characterization of cathode 

degradation in SOFCs using FIB/SEM and TEM,” Microscopy and Microanalysis, 21, S3, 2161, 2015.

Proceedings publications:

Presentations:

1 Approximately 20 contributed/invited presentations from 2012 – 2016 at Materials Research Society meetings, American 

Physical Society meetings, Microscopy & Microanalysis, as well as a number of smaller research seminars and symposia.
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“Extracurricular Activities”

● Evaluation, analysis, and recommendations for UMD FIB/SEM acquisition 
─

─ Resulted in purchase of two Tescan FIB/SEM systems in the AIMLab

● Public release of software tools developed in this research:
─

─ Available in public repository:
─ Active contributor to HyperSpy:
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https://bitbucket.org/jat255/jat255-python-modules https://github.com/hyperspy/hyperspy
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“Extracurricular Activities”

● Frequent collaboration and characterization assistance with members of the 
Maryland community:

─ C. Preston, D. Song, J. Taillon, J. Cumings,  L. Hu, “Boron-Doped Few-Walled Carbon Nanotubes: Novel 
Synthesis and Properties", Submitted to Nanotechnology (2016).

─ H. Bai, J. Taillon, L. Salamanca-Riba, “Anisotropically Shaped CdSxSe1-x Pseudobinary Semiconductor 
Nanocrystals”, Submitted to Chemistry of Materials (2016). 

─ C. Gong, M. Dias, G. Wessler, J. Taillon,  L. Salamanca-Riba, and M. Leite, “Fully Alloyed Noble Metal 
Nanoparticles via Physical Deposition for Plasmonics”, Submitted to Advanced Optical Materials
(2016).

71



Backscatter electron image of PSG on SiC, after 2 
minutes of patterning with the Gaia FIB (20pA current). 
Image contrast arises from the mass difference caused 
by Ga implantation into the sample
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Backscatter electron image of PSG on SiC, after 2 
minutes of patterning with the Gaia FIB (20pA current). 
Image contrast arises from the mass difference caused 
by Ga implantation into the sample
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