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Introduction (About Me)

* NRC Postdoc in Materials Measurements Science Division

* Microscopy and Microanalysis Research Group

« Background in Materials Characterization:
« TEM, FIB/SEM, EELS/EDS spectroscopies

l‘|
HM
SiC  Int.  SiO, f
| l V/NM\
ML Factor analysis | M
and spectral i ,f\/
unmixing: | = ) —
EELS Spectrum Image ’M - ) - ———— -

Si-Lz 3 ELNES signal

MATERIAL MEASUREMENT LABORATORY



Introduction (About Me)

* NRC Postdoc in Materials Measurements Science Division

* Microscopy and Microanalysis Research Group

« Background in Materials Characterization:
« TEM, FIB/SEM, EELS/EDS spectroscopies

7« Hyperspy
* &/ multi-dimensional data analysis

@ python’
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http://www.hyperspy.org/
http://www.hyperspy.org/

Introduction (About Me)

* NRC Postdoc in Materials Measurements Science Division

* Microscopy and Microanalysis Research Group

« Background in Materials Characterization:
« TEM, FIB/SEM, EELS/EDS spectroscopies

Three dimensional
nanotomography and
microstructure analysis:
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Introduction (About Me)

* NRC Postdoc in Materials Measurements Science Division
» Microscopy and Microanalysis Research Group

« Background in Materials Characterization:
« TEM, FIB/SEM, EELS/EDS spectroscopies

//,
. TCL Matlab

. P pgthon ‘
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Research Interests

* Lots of opportunity at intersection of microscopy and computer
science/mathematics

» Active learning
* Novel data analysis methods
« Automated tool control

 Compressed sensing
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Brief intro to compressed sensing




Motivating example

 Assume you have 7 coins
 One is counterfeit with a different mass than the others

« Easy solution would be to measure the mass of each individual coin

« Can we do better?

Good introductions in: E.J. Candés and M.B. Wakin, An Introduction
To Compressive Sampling, IEEE Signal Process. Mag. 25, 21 (2008).
K. Bryan and T. Leise, Making Do with Less: An Introduction to
Compressed Sensing, SIAM Rev. 55, 547 (2013).
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https://doi.org/10.1109/MSP.2007.914731
http://dx.doi.org/10.1137/110837681

Motivating example

 Assume you have 7 coins

 One is counterfeit with a different mass than the others

« Easy solution would be to measure the mass of each individual coin

« Can we do better?

* Measure groupings of coins instead: N =7 coins ,
 Only 3 measurements needed I' ' 0 L 8 1 0 1
=0 1 1 0 0 1 1 n=3
measurement
I @9 I I 1 A 1 S

Good introductions in: E.J. Candés and M.B. Wakin, An Introduction
To Compressive Sampling, IEEE Signal Process. Mag. 25, 21 (2008).
K. Bryan and T. Leise, Making Do with Less: An Introduction to
Compressed Sensing, SIAM Rev. 55, 547 (2013).
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Motivating example

 Assume you have 7 coins

 One is counterfeit with a different mass than the others

« Easy solution would be to measure the mass of each individual coin

« Can we do better?

» Measure groupings of coins instead: N =7 coins ,
* Only 3 measurements needed |73 L § 2 O 4|
« More generally, ¢=10 41 1 0 0% 1 meaZuTe?nent
n = log,(N) < N |00 @ I I % Lj|| s

Good introductions in: E.J. Candés and M.B. Wakin, An Introduction
To Compressive Sampling, IEEE Signal Process. Mag. 25, 21 (2008).
K. Bryan and T. Leise, Making Do with Less: An Introduction to
Compressed Sensing, SIAM Rev. 55, 547 (2013).
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https://doi.org/10.1109/MSP.2007.914731
http://dx.doi.org/10.1137/110837681

More general CS formalism

« ®isn x N “sensing matrix”

« We are trying to recover an unknown sparse vector x € R with a measurement vector b
and a known sensing matrix ®

* X is sparse (mostly zeros), and describes which coin is different

 We want to find a sparse solution that satisfies ®x = b, given:

.
. EE RN EE TN i
b=H =0 1 1 0 0 ¢ 1 x=12
’ 9@ I B L | ;
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More general CS formalism

 How do we determine ®?
« Strictly speaking, it must obey the “restricted isometry principle” (RIP)

 RIP means that if we select K random columns from &, that submatrix is full rank

« Designing a ® to satisfy the RIP is actually NP-hard, but it turns out it's not necessary for a
successful recovery of x, just sufficient

« Turns out that a random binary matrix will satisfy RIP (with high probability)

* |In practically all implementations of CS, this random sampling is what is used

MATERIAL MEASUREMENT LABORATORY 14




More general CS formalism

& has fewer rows than columns, so ®x = b is underdetermined

 This means there are an infinite number of solutions

« The “magic” of compressed sensing is the use of the £, norm for convex
optimization to find the “best” x (when using the right ®)

Minimizin . e .
& Definition Description
Norm
' v _ o 0 _ uf: Number of non-zero
NP-hard! > 0 lxllo = Lix; = #(i[x; # 0) components
Manhattan distance
2 lxlly = Z;]x| (Sum of Absolute
Difference)

[l N Bad 2, Euclidean distance

”x ” Z'x' | i
rESUItS 2 24 ] ( east squares dlfference)
I. Zhou. ' Compressed Sensing Review (1):

Reconstruction Algorithms." Tianyi Zhou's Research
Blog, (2010).
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https://tianyizhou.wordpress.com/2010/08/23/compressed-sensing-review-1-reconstruction-algorithms

Why “compressed” sensing?

« Consider a “compressible”
HRTEM image:
* In the pixel basis, many

coefficients needed to
encode the image

“ (b) ool (€)

2000

* |n the wavelet basis, very
few coefficients are needed

9 SO 100 150 200 250 0o 500 1000 1500 2000 2500

* |dea behind JPEG, etc. ‘ Pixel counts Wavelet counts

Adapted from P. Binev et al., “Compressed Sensing and Electron Microscopy” in
Modeling Nanoscale Imaging Electron Microscopy (2012).

 What if we could measure the sparse basis directly?
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Areas of initial success - MRI
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Comics from Michael Lustig

« Subsampling k-space greatly reduces number of acquisitions needed, and time for patient
« Greatly expands indications for MRI (pediatrics, compromised health, etc.)
« After 10 years, first FDA-approved applications of CS-MRI on the market in Feb. 2017 (link)

« Compressed sensing saves lives!
» J. Ellenberg, "Fill in the Blanks: Using Math to Turn Lo-Res Datasets Into Hi-Res
Samples," Wired (2010).

MATERIAL MEASUREMENT LABORATORY


http://people.eecs.berkeley.edu/~mlustig/comics0.html
https://usa.healthcare.siemens.com/press/pressreleases/healthcare-news-2017-02-21-1
https://www.wired.com/2010/02/ff_algorithm/all/1

Areas of initial success - NMR Spectroscopy

« Multidimensional nuclear magnetic resonance

&("*N)/ppm

S 30%
o y ' sampling « NMR s:pectra are typically sparse - few isolated
%, peaks in the Fourier domain
 Measured 30% of the 128 complex data pairs

« Measurement time: 165 min = 50 min

A("*N)/ppm

. Full sampling « Observed very high fidelity reconstructions w.r.t.
e g O peak positions and shape/intensity

8("H)/ ppm

D.J. Holland, et al., Fast Multidimensional NMR Spectroscopy Using Compressed Sensing, Angew. Chemie Int. Ed. 50, 6548 (2011).
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https://doi.org/10.1002/anie.201100440

Efforts in CS for electron microscopy




CS in TEM (electron tomography - CS-ET)

« Tilt-tomography finds 3D representations of objects in the TEM by acquiring
2D images at many tilt angles

* Can reduce number of tilted images needed using CS principles and compare results to
the standard simultaneous iterative reconstruction technique (SIRT)

# of Projections

 Tomography of iron oxide nanoparticles: 27 13

)

* CS-ET performs significantly better than SIRT,
at all signal levels

CS-ET

Z. Saghi, et al. Three-dimensional morphology of iron
oxide nanoparticles with reactive concave surfaces. A
compressed sensing-electron tomography (CS-ET)
approach, Nano Lett. 11, 4666 (2011).
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R.K. Leary, et al., Compressed sensing electron
tomography, Ultramicroscopy. 131, 70 (2013).

13
Number of projections
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https://doi.org/10.1021/nl202253a
https://doi.org/10.1016/j.ultramic.2013.03.019

Zeolite

CS in STEM (imaging)

* Benefits of reduced
sampling in STEM:

 Reduced dose (for
electron-sensitive materials)

100 %

20 %

 Reduced time/increased
throughput

« Random sampling in pixel-
domain

10 %

« Bayesian factor analysis to
find sparse representation
(BPFA)

* Sampling done with beam
blanker or meandering beam

5%

A. Stevens, et al., The potential for Bayesian compressive sensing to significantly reduce
electron dose in high-resolution STEM images, Microscopy. 63, 41 (2014).
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https://doi.org/10.1093/jmicro/dft042

CSin SEM

 Two published implementations:

 H.S. Anderson, et al., Sparse imaging for fast electron microscopy, Proc. SPIE-IS&T Electron.
Imaging. 8657 (2013).

» Use a split Bregman formulation of basis-pursuit for £; minimization

* Drive beam to random pixels, taking care to account for scan coil dynamics

« 10x imaging speedup when imaging only 10% of pixel locations (linear response)

« K. Hujsak, et al., Suppressing Electron Exposure Artifacts: An Electron Scanning Paradigm with
Bayesian Machine Learning, Microscopy and Microanalysis, 1-11 (2016).

e Use the same BPFA as in Stevens’ CS-STEM

* No scan coil modifications to SEM (just need high-speed beam blanker)

« Did not demonstrate significant speed gains, but did significantly reduce dose
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https://doi.org/10.1117/12.2008313
https://doi.org/10.1017/S1431927616011417

CSin SEM

* K. Hujsak, et al., Suppressing Electron
Exposure Artifacts: An Electron Scanning
Paradigm with Bayesian Machine Learning,
Microscopy and Microanalysis, 1-11 (2016).

* Analyzed effect of reduced dose from CS-SEM
on electron-sensitive human collagen sample

Fully sampled
Aejrdan0 28ew|

» Significant reduction in sample modification
due to beam-damage

30% sampled
UOI}ONIISU0IDY

» Also tested various scan patterns

* Random sampling was found to perform better
than spiral, Lissajous, and random line sampling

» Highest reconstructed PSNR and least number
of scanning artifacts

Cross-Correlation
o
@

| =& Full Imag s
0.6 | ~= Sparse Images

1 2 3

Aejrano a8ew|
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Our initial work




Our goals

* Originally set out to implement what was
published by Hujsak

« Have pivoted instead to see what impact we can
have in the analytical realm

* One conference paper on CS in STEM-EELS, but
nothing else (yet)

* Given our preference for FIB/SEM, we’'ll focus
on X-ray analysis (EDS)

* Long dwell times needed

« Acquisitions will damage beam-sensitive
materials

« Seems ripe for “disruption”

O Ka

Fe Ka
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Strategy

Identify existing reconstruction algorithm that is purpose-built for
hyperspectral imaging (HSI) data

* The hyperspectral remote sensing community has been much faster to adopt advanced
data analysis methods (like CS) than the microscopy community

Demonstrate control and implement on existing HSI data

Apply to simulated EDS data to determine/quantify effectiveness

Determine what (if any) performance enhancement can be gained on live
experiments

MATERIAL MEASUREMENT LABORATORY 26




BPFA = Beta-Bernoulli Process Factor Analysis

Factor analysis

Decompose signal into a linear approximation of factors and weights

xl p— D Wl _I_ El Nois.eand

/ residual
Original data ] \

samples Dictionary matrix of
“prototypical” signals

Dictionary element
weights (vector)

8
P24

Da=dja;+dsay + - +dgag

aE-l -

A= s An image patch (x;) can be represented

iy T R by a dictionary (D) of representative

%:z‘ ~ T patches, with each element weighted by

a~il-B a factor from w (plus some noise €)

E]%E]: Figure from: A. Stevens, et al. Microscopy. 63, 41 (2014).

Note: w; = a; in this paper’s notation
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BPFA = Beta-Bernoulli Process Factor Analysis

* How to find D and w?

« Bayesian beta-Bernoulli Process

* We infer the underlying signal x; = Dw; by:
 Placing Bayesian priors on D, w;, and ¢;
« Assuming that w; is sparse

 |terate on each parameter to improve the
estimation of their values (based on observed data)

Details about algorithms in:
e M. Zhou, et al., Nonparametric bayesian dictionary learning for analysis of noisy and incomplete images, IEEE Trans. Image Process. 21, 130-144 (2012)

e Z.Xing, et al., Dictionary Learning for Noisy and Incomplete Hyperspectral Images, SIAM J. Imaging Sci. 5, 33-56 (2012).
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https://doi.org/10.1109/TIP.2011.2160072
https://doi.org/10.1137/110837486

BPFA Formalism

 What does beta-Bernoulli Process mean in practice?
« BPis a strategy for updating w; in a Bayesian manner

 Definew;asz; ©s;:
* (© = element-wise multiplication
» s; are the dictionary weights
« z; are “binary indicators”, specifying which of the K

columns of D are used to represent x;:

» z; are drawn from a Bernoulli distribution:

K
zZ; ~ 1_[ Bernoulli (7))
k=1

*  Where my, is the kth component of:

1—["’ Bet a b(K—-1)
T kzleaK, e

f(k;p>{1fp e

2.5

POF

Bernoulli Distribution

Beta Distribution

Trrlo

RRARg
Ny
NNFUVe
VN W-

DWW |
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BPFA Formalism

* Full model parameters: * More definitions:

- x;=Dw; +¢ * ~ means a Bayesian variable drawn from
the specified prior distribution

« N (i,j) specifies a normal distribution
with mean i and variance j

si ~N(0,y5 'g) « y; are conjugate hyperpriors of the form

€~ N0,y 1p) ¥s ~ Gamma(c, d) and y, ~ Gamma(e, f)

» d, represents the kth component
(column) of D

* w;=2z;0s5;

dk ~ N(O, P_llp)

« z; ~ [I¥_, Bernoulli (i)

m ~ [[X_,Beta (%, b(li(_l))
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How does it work?

* The model is inferred using Gibbs Sampling

* Markov chain Monte Carlo algorithm used to sample the full Bayesian likelihood

« Samples from the posterior distribution of each random variable are estimated by
iteratively sampling from the conditional distributions of each variable (given all the

others)

« After “enough’” iterations, the estimated variables are likely close to the true model
parameters

* Such a method determines both the dictionary and weights iteratively
« Can be used on plain imagery (like Anderson and Hujsak)
« Also developed for hyperspectral imagery (by Xing)
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https://en.wikipedia.org/wiki/Gibbs_sampling
http://jmicro.oxfordjournals.org/cgi/doi/10.1093/jmicro/dft042
http://www.journals.cambridge.org/abstract_S1431927616011417
https://doi.org/10.1137/110837486

What does it look like in practice?

« Example data from algorithm authors:
» Hyperspectral imagery (HSI) from satellite imaging of an urban environment
150 x 150 spatial pixels - 210 spectral bands

« Artificially remove some large fraction of voxels, and reconstruct using BPFA:
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What does it look like in practice?

Original data 2% sampling 2x2 patch size 4x4 patch size

Spectral
Channel 100

PSNR = 8.77 dB PSNR =21.36 dB PSNR = 24.00 dB

Center pixel
spectrum
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How about EDS?

« Simulated 3D data cube using DTSA-II:
* 100 x 100 spatial - 2048 spectral channels

ELOCK ~ D <
‘ 2 3 | Y 2
Schematic of spherical geometry 3D visualization of quantified

block
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How about EDS?

« Simulated 3D data cube using DTSA-II:
« 100 x 100 map - 2048 spectral channels

* Fully sampled quantification data:

Carbon Platinum Calcium Phosphorus Silicon Copper
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2x 2Patch Restored Image
8.691d8 8.727548

2
3:
$

BOCEF e

BPFA reconstruction of subsampled EDS

« Tested both 2 x 2 | em” e
and 4 x 4 patch Il - |
sizes = el W B §

« Subsample by T —

zeroing out a large
fraction of the

200 | |
2001 |
200 | | |
b T Ado . - o e ]
| 50 106x [ 5 KX

simulated voxels | =]
d Analyzed ” A xR ‘ ‘1LT.—“L‘T.‘ "‘J“T-.‘}Tf;-:-

reconstruction L —— .

output as function I l ]

of observation ratio | B e —
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Reconstruction “phase transition”

e Donoho-Tanner
transition

* Reconstruction
either fails
completely, or
does pretty well

* Abrupt onset of
success at a
certain signal level

2x2 patch size - EDS map

30 A

25 4

PSNR

15~

10 4

e

PSNR =10-1 MAXiZ
= 0810 MSE

« P5SNR In

---l.QO-II-Il"--------"-. . PSNRGut

=
o

T T T T
5.0 1.5 10.0 12.5 15.0 17.5 20.0
Observed data ratio (%)

MJ
Ln
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Original cata

Reconstruction “phase transition”

* Donoho-Tanner -
transition 2x2 patch size - EDS map

30 A

|
e Reconstruction : .------------------------l--
) . ,_0.9% observed data -2 x 2 I ..l." v\
elther falls . : I. o 10.0% observed data - 2 x 2
' |
|

completely, or

25 -
does pretty well g p
* Abrupt onset of > i
success at a v 20 4 :
certain signal level m :
X axis lumi |
[ ] 1 I
QuaIIth Of t. 0.7% observed data - 2 x 2 : R
reconstruction 15 | 2
ti t | PSNR = 10 - loglow
Fon Inues .o , MSE
improve with :
more data i g i e PSNRIn
%-----------------------"" o PSNR Out
|
T T T T T T T T T
' ‘ 00 25 5.0 75 10.0 125 150 17.5 20.0
o iaxni:m:l o Observed data ratio (%)
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More realistic test

Live time = 0.005 s

Live time = 0.010 s

15 15
10 + 10 +
 Random subsampling of 51 T | 51 |‘| |
entire dataCUbe iS not 0 0 5 10 15 20 D_n 5 10 15 20
. ° . nergy axis (keV) nergy axis (keV)
particularly realistic srerey as e srerey as e
s Live time = 0.015 s s Live time = 0.020 s
10 + 10 +
* |Instead, simulate EDS 5 I i l " IH ‘
collections with varying s T - - ~ oz T - - -
dwe" times Energy axis (keV) Energy axis (keV)
- Simulates faster experimental 15 Live time = 0.025 5 15 ve time = 0.030 s
maps, without subsampling 10 - 10-
locations (or energies) 5 l 5 ‘
0 . | . 1 o . - . .
0 5 10 15 20 0 5 10 15 20

Energy axis (keV} Energy axis (keV}
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Results of live time variation

Input at 2.01 keV Output at 2.01 keV

0.005s 0.010s 0.015s

0.010s
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Results of live time variation

 Improvement in PSNR statistics ro oatch <
. patch size - EDS map
not as dramatic as true random -
sampling 18 4

* Never reaches high 20s value of 6 - oo®
previous example ot L

* Reasons? P11 o

» Suspect not sparse enough in energy 12 -
axis

« Thresholding of continuum X-rays o . PSNRIn

could help ® PSNR Out

0 1 2 3 2 5
 Still investigating these results Live time (s)
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Future directions




Ongoing work

* Improving results of reduced dwell time reconstructions
« X-ray continuum makes signal non-sparse, leading to bad performance
* Implement some sort of thresholding, or artificially subsample energy dimension?

« Eventually need to demonstrate effectiveness on experimental data

« Extension of algorithm to 3D

* Should be relatively simple, and could enable even lower electron doses

» Extend algorithm to allow incoming information

* Could make interactive EDS map collections more immediately informative

 Make code more performant

* Currently single-threaded in Matlab and has not been optimized at all
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Thank you!

Questions/comments?

joshua.taillon@nist.gov

x2913
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