EDS-TEM quantification of core shell nanoparticles

- Using machine learning methods, the composition of embedded nanostructures can be accurately measured
- Demonstrated by D. Roussow et al., Nano Letters, 2015
 - See the <u>full article</u> for details
- Using the same data, this notebook reproduces the main results of this article

Credits

- This notebook was originally written by Pierre Burdet in 2015, with subsequent edits by:
 - Duncan Johnstone 2016
 - Francisco de la Peña 2016
 - Pierre Burdet 2016
 - Andy Herzing and Josh Taillon 2018
- Requires HyperSpy v1.3+

1. Specimen & Data

The sample and the data used in this tutorial are described in D. Roussow, et al., Nano Letters, In Press (2015) (see the <u>full article</u>).

FePt@Fe₃O₄ core-shell nanoparticles are investigated with an EDS/TEM experiment (FEI Osiris TEM, 4 EDS detectors). The composition of the core can be measured with ICA (see figure 1c). To prove the accuracy of the results, measurements on bare FePt bimetallic nanoparticles from a synthesis prior to the shell addition step are used.

Figure 1: (a) A spectrum image obtained from a cluster of core-shell nanoparticles. (b) The nanoparticles are comprised of a bi-metallic Pt/Fe core surrounded by an iron oxide shell on a carbon support. (c) ICA decomposes the mixed EDX signals into components representing the core (IC#0), shell (IC#1) and support (IC#2).

2. Loading the data

Import HyperSpy, numpy and matplotlib libraries

In [2]:

%matplotlib nbagg
import hyperspy.api as hs
import numpy as np

Load the spectrum images of the bare seeds and the core shell nanoparticles.

MATERIAL MEASUREMENT LABORATORY

Plot the intensity of Fe K α and Pt L α lines:

X-ray line intensity of

3. Blind source separation of core/shell nanoparticles

Apply blind source separation (ICA) to obtain a factor (spectrum) corresponding to the core.

In [6]:

Have to change datatype to float for decomposition: cs.change_dtype('float') cs.decomposition()

ICA on the three first components.

In [8]: cs.blind_source_separation(3)
In [9]: axes = cs.plot_bss_loadings()

cs.plot_bss_factors()

NIST MATERIAL MEASUREMENT LABORATORY

The first component corresponds to the core.

4. Representative spectrum from bare cores

We meed to obtain a representative spectrum of the bare nanoparticles so we can compare to the BSS component

We can mask the low intensity of the Pt L α signal:

In [13]: pt_la = c.get_lines_intensity(['Pt_La'])[0] mask = pt_la > 6

Visualizing the mask:

In [14]: axes = hs.plot.plot_images(hs.transpose(*(mask, pt_la * mask)), axes_decor='off', colorbar=None, label=['Mask', 'Pt L\${\\alpha}\$ intensity'], cmap='viridis')

Pt L α intensity

Applying the mask:

• mask is a Signal containing boolean values, but it is 2D, not 3D:

```
In [15]: print(mask.data.shape)
         mask.data
         (84, 84)
Out[15]: array([[False, False, False, ..., False, False, False],
                [False, False, False, ..., False, False, False],
                [False, False, False, ..., False, False, False],
                •••,
                [False, False, False, ..., False, False, False],
                [False, False, False, ..., False, False, False],
                [False, False, False, ..., False, False, False]], dtype=bool)
```


• To apply the mask, we can just multiply the signals together thanks to numpy's array broadcasting:

In [16]: c_masked = c * mask

In [17]: c_masked.plot()

NIST MATERIAL MEASUREMENT LABORATORY

The sum over the masked particles is used as a bare core spectrum:

5. Comparison and quantification

We stack together the spectrum of bare particles and the first ICA component:

In [20]: s_bare.change_dtype('float') s = hs.stack([s_bare, s_bss], new_axis_name='Bare or BSS') s.metadata.General.title = 'Bare or BSS'

Comparison method 1 – net intensity calculation

X-ray intensities measurement with background subtraction

Refinement of the windows position.

In [24]:	W			
Out[24]:	array([[5.99958948,	6.13435965,	6.67344035,	6.80821052],
	[8.96061636,	9.1211109 ,	9.7630891 ,	9.92358364]])
In [25]:	w[1, 0] = 8.44 w[1, 1] = 8.65 W			
Out[25]:	array([[5.99958948,	6.13435965,	6.67344035,	6.80821052],
	[8.44 ,	8.65 ,	9.7630891 ,	9.92358364]])


```
sI = s.get_lines_intensity(background_windows=w)
In [27]:
         sI
Out[27]: [<BaseSignal, title: X-ray line intensity of Bare or BSS: Fe_Ka at 6.40 keV, dimensions: (2|)>,
          <BaseSignal, title: X-ray line intensity of Bare or BSS: Pt_La at 9.44 keV, dimensions: (2|)>]
```

Comparing the ratio of Fe intensity to Pt:

Comparison method 2 – model fitting

Measure X-ray intensity by fitting a Gaussian model

In [29]:

In [30]:

Create a model based off a cropped area of signal: m = s.isig[5.:15.].create_model()

6.7

Add background copper and cobalt elements:

In [31]: m.add_family_lines(['Cu_Ka', 'Co_Ka'])

Contents of the model:

In [32]:	m.compo	onents		
Out[32]:	#	Attribute Name	Component Name	Component Type
	0	background order 6	background order 6	Polynomial
	1	Fe Ka	 Fe Ka	Gaussian
	2	Fe Kb	Fe Kb	Gaussian
	3		Pt La	Gaussian
	4			Gaussian
	5		Pt Lb4	Gaussian
	6		Pt Ln	Gaussian
	7	Pt Ll	Pt Ll	Gaussian
	8			Gaussian
	9	Pt Lb3	Pt Lb3	Gaussian
	10	Pt_Lg3	Pt_Lg3	Gaussian
	11	Pt_Lg1	Pt_Lg1	Gaussian
	12	Cu_Ka	Cu_Ka	Gaussian
	13	Cu_Kb	Cu_Kb	Gaussian
	14	Co_Ka	Co_Ka	Gaussian
	15	Co Kb	Co Kb	Gaussian

In [33]: m.plot(plot_components=True)

Fitting the model at all locations of the signal is a simple one line command:

In [34]: m.multifit(show_progressbar=False)

In [35]:

m.plot(plot_components=True)

The background is fitted separately:

In [36]: m.fit_background()

In [37]: m.calibrate_energy_axis()

In [38]: m.plot()

Finally, we probe line intensity from the fitted model:

In [39]:	sI = m.get_lin sI	nes_inte	ensity()[:2	2]										
Out[39]:	[<basesignal,< th=""><th>title:</th><th>Intensity</th><th>of</th><th>Fe_Ka</th><th>at</th><th>6.40</th><th>keV</th><th>from</th><th>Bare</th><th>or</th><th>BSS,</th><th>dimensions:</th><th>(2)>,</th></basesignal,<>	title:	Intensity	of	Fe_Ka	at	6.40	keV	from	Bare	or	BSS,	dimensions:	(2)>,
	<basesignal,< td=""><td>title:</td><td>Intensity</td><td>of</td><td>Pt_La</td><td>at</td><td>9.44</td><td>keV</td><td>from</td><td>Bare</td><td>or</td><td>BSS,</td><td>dimensions:</td><td>(2)>]</td></basesignal,<>	title:	Intensity	of	Pt_La	at	9.44	keV	from	Bare	or	BSS,	dimensions:	(2)>]

Set up the kfactors for Fe K α and Pt L α .

In [40]: #From Bruker software (Esprit) kfactors = [1.450226, 5.075602]

6. Going further

Further image processing with <u>scikit-image</u> and <u>scipy</u>. Apply a watershed transformation to isolate the nanoparticles.

- Transform the mask into a distance map.
- Find local maxima.
- Apply the watershed to the distance map using the local maximum as seed (markers).

Adapted from this scikit-image <u>example</u>.

In [43]: from scipy.ndimage import distance_transform_edt, label from skimage.morphology import watershed from skimage.feature import peak_local_max

Perform watershed segmentation:

In [44]: distance = distance_transform_edt(mask.data) local_maxi = peak_local_max(distance, indices=False, min_distance=2, labels=mask.data) labels = watershed(-distance, markers=label(local_maxi)[0], mask=mask.data)

Plot the results:

In [45]: axes = hs.plot.plot_images(
 [pt_la.T, mask.T, hs.signals.Signal2D(distance), hs.signals.Signal2D(labels)],
 axes_decor='off', per_row=2, colorbar=None, cmap=['RdYlBu_r', 'Set1_r'],
 label=['Pt L\${\\alpha}\$ intensity', 'Mask',
 'Distances', 'Separated particles'])

Distances

Mask

Separated particles

Questions?

Next demo: tomotools

