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Or, when “making up data” might actually be okay…



Disclaimer

Certain commercial equipment, instruments, materials, 
vendors, and software are identified in this talk for 
example purposes and to foster understanding. Such 
identification does not imply recommendation or 
endorsement by NIST, nor does it imply that the 
materials or equipment identified are necessarily the 
best available for the purpose.
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Outline

• What is “computational 
microscopy”

• A shifting paradigm for 
microscopists and microanalysts

• Introduction to and applications 
of compressive sensing in 
microscopy

• Some of our initial work
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Computational Microscopy
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Defining “Computational Microscopy”

• What don’t we mean?

• Digitization

• Image simulation

• Image processing/analysis

…in the basic form…

Kodak TEM film; Ted Pella

Direct e- detector; Gatan

NB: This is personal 
opinion! Feel free to 
argue with me…

EJ Kirkland; Multislice TEM Simulation
HRTEM Fourier analysis

5



Defining “Computational Microscopy”

• An attempt at a definition:

“Microscopy directed by or collected primarily for computational processes 

(as opposed to by or for the user directly)”

• Relevant buzzwords:

• Machine learning, artificial intelligence, autonomous measurement, dynamic sampling, 
compressive sensing/sparse imaging

NB: This is personal 
opinion! Feel free to 
argue with me…
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Some examples – 1/4

• Machine learning 
factor analysis
O. Nicoletti, P. Midgley, et al., 
Nature, 502, 80-84, 2013

• Non-negative matrix 
factorization of EELS spectra

• Identifying meaningful spectral 
components in a sea of 
overlapping signals

• Combine with tilt-tomography for 
3D information

• Identified nanoparticle plasmon 
resonances

Energy loss (eV)
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Some examples – 2/4

• Dynamic sampling 
G. Godaliyadda, C. Bouman, et al., 
Electronic Imaging, 19, 1-8, 2016

• SLADS algorithm

• Sparse imaging and weighted 
inpainting reconstruction

• Train algorithm offline to 
measure how much certain types 
of pixels reduce overall distortion

• Online, pick new pixels to reduce 
expected distortion in 
reconstruction
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Some examples – 3/4

• Autonomous metrology
A. Kusne, I. Takeuchi, et al., 
Nanotechnology, 26, 444002, 2015

…and recent unpublished results

• High-throughput XRD for combinatorial 
materials discovery

• Autonomous phase diagram mapping of 
composition spread wafer

• Phase diagram is estimated at each step 
based on collected data and physics-
informed ML algorithms

• Unsupervised AI determines new 
composition to measure to best estimate 
phase diagram

Estimated phase boundary

Theory-based sample

Current measurement

Measured samples
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Autonomous F-score

Sequential F-score

AI is directly controlling the X-ray diffraction systems at SLAC

Gilad Kusne –
aaron.kusne@nist.gov
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Some examples – 4/4

• Compressive sensing
A. Stevens, N. Browning, et al.
Microscopy, 63, 41-51, 2014.

• Intentionally acquire image at severe 
undersampling conditions

• Use ℓ𝟏-norm convex optimization to fill in 
the missing details

• An interesting means to get around the 
Nyquist-Shannon limit

• Demonstrated with random sampling in 
both STEM and SEM
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Outline
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• A shifting paradigm for 
microscopists and microanalysts

• Introduction to and applications 
of compressive sensing in 
microscopy

• Some of our initial work
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Moving towards reproducible microscopy

• One or more software 
packages typically necessary

• Often vendor-provided

• GUI-driven with many options, 
sometimes “black-box”

• Typically, no log recorded

• Hope you keep a good notebook!

• Tightly integrated with 
equipment/acquisition
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A better way…

• Computation within a 
“notebook” environment

• Seamless mixing of 
notetaking, mathematics, 
and data analysis

• Notebook is rendered in 
any web browser 

• Version controlled and 
exportable to PDF, HTML, 
Markdown, etc.
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A better way…

• Notebook-based tools are used extensively in data science

• Jupyter Notebook - http://jupyter.org/ is open-source option

• Works with Python, Julia, R, Scala, Matlab, Fortran, Ruby, Spark, Go, C, etc.

• With Python (and others): robust open-source 3rd-party libraries for many features

• Proprietary options:

• Mathematica, Maple

• Other options

• GUI recorders and reporting

• Data pipelines – Common Workflow Language (CWL)

• Requires data interoperability
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My “ideal” picture for research dissemination

• Publishing should require workflow along with results

• Trying to reproduce others’ implementations is a waste of scientific (and financial) capital

• A “journal article” should be able to be downloaded and the analysis reproduced

• Like a supercharged “Methods” section

• Does not need to be command line-based

• GUI tools that record interactions and options

• Import/export states of execution

• A common language would help
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Motivation behind compressive sensing (CS)

• Consider JPEG(2000) compression

• Acquire raw pixel values from camera 
sensor (large – many megapixels)

• Decompose into wavelet basis

• Discard small coefficients Store only 
“important coefficients” (small file size)

• Decode image back into pixel basis for 
viewing

• Why spend time acquiring data we just 
throw away?
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E.J. Candès and M.B. Wakin, IEEE Signal Process. Mag. 25, 21–30 (2008)



What is compressed sensing (CS)?

• CS describes the perfect recovery of certain signals using a drastically 
reduced number of samples compared to Nyquist

• Traditional Nyquist limit says we need at least 2x highest frequency samples

• Two conditions needed for successful CS:

• The signal must be sparse in some domain (basis)

• The signal must be sensed in an incoherent manner 

More reading for good introductions to the theory:

• E.J. Candès and M.B. Wakin, An Introduction To Compressive 
Sampling, IEEE Signal Process. Mag. 25, 21 (2008). 

• K. Bryan and T. Leise, Making Do with Less: An Introduction to 
Compressed Sensing, SIAM Rev. 55, 547 (2013). 
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What is compressed sensing (CS)?

• Two conditions needed for successful CS:

• The signal must be sparse in some domain (basis)

• Sparsity ≈ compressibility – we know natural images can be represented sparsely

• If your image (or spectrum image) can be highly compressed, it is likely sparse!

• The signal must be sensed in an incoherent manner 

• An entire lecture could be devoted to incoherence

• For practical applications, uniform random sampling satisfies the incoherence necessity
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Slightly more technical description

• Consider an unknown signal 
to be measured 𝒙

• 𝚽 is the known “sensing” or 
measurement matrix

• 𝒚 is our known measurement 
vector

• We need to solve for 𝒙, given 
𝒚 = 𝚽𝒙

21
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Slightly more technical description

• 𝚽 has fewer rows than columns, so 𝒚 = 𝚽𝒙 is underdetermined

• This means there are an infinite number of solutions

• The “magic” of compressed sensing is the use of the ℓ1 norm for convex 
optimization to find the “best” 𝐱 (when using the right 𝚽)

T. Zhou. "Compressed Sensing Review (1): 
Reconstruction Algorithms." Tianyi Zhou's 
Research Blog, (2010).

Minimizing 
Norm

Definition Description

ℓ𝟎 𝑥 0 =
0
Σ𝑖𝑥𝑖

0 = # 𝑖 𝑥𝑖 ≠ 0
Number of non-zero 

components

ℓ𝟏 𝑥 1 = Σ𝑖|𝑥𝑖|
Manhattan distance
(Sum of Absolute 

Difference)

ℓ𝟐 𝑥 2 = Σ𝑖𝑥𝑖
2 Euclidean distance        

(Least squares difference)

NP-hard!

Bad
results
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CS in TEM (electron tomography – CS-ET)

• Tilt-tomography finds 3D representations of objects in the TEM by acquiring 
2D images at many tilt angles

• Can reduce number of tilted images needed using CS principles and compare results to 
the standard simultaneous iterative reconstruction technique (SIRT)

• Tomography of iron oxide nanoparticles:

• CS-ET performs significantly better than SIRT,
at all signal levels

Z. Saghi, et al. Three-dimensional morphology of iron 
oxide nanoparticles with reactive concave surfaces. A 
compressed sensing-electron tomography (CS-ET) 
approach, Nano Lett. 11, 4666 (2011).

R.K. Leary, et al., Compressed sensing electron 
tomography, Ultramicroscopy. 131, 70 (2013). 

# of Projections
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CS in STEM (imaging)

• Benefits of reduced 
sampling in STEM:

• Reduced dose (for 
electron-sensitive materials)

• Reduced time/increased 
throughput

• Random sampling in pixel-
domain

• Bayesian factor analysis to 
find sparse representation 
(BPFA)

• Sampling done with beam 
blanker or meandering beam

A. Stevens, et al., The potential for Bayesian compressive sensing to significantly reduce 
electron dose in high-resolution STEM images, Microscopy. 63, 41 (2014).
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CS in SEM

• K. Hujsak, et al., Suppressing Electron 
Exposure Artifacts: An Electron Scanning 
Paradigm with Bayesian Machine Learning, 
Microscopy and Microanalysis, 1–11 (2016).

• Analyzed effect of reduced dose from CS-SEM 
on electron-sensitive human collagen sample

• Significant reduction in sample modification 
due to beam-damage

• Also tested various scan patterns

• Random sampling was found to perform better 
than spiral, Lissajous, and random line sampling

• Highest reconstructed PSNR and least number 
of scanning artifacts
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Our goals

• Exploring CS applications in the 
microanalytical realm

• EDS in the FIB-SEM can take a very long 
time (especially in 3D)

• Long dwell times needed

• 2D maps are very often sparse in a pixel basis

• Acquisitions will damage beam-sensitive 
materials

27
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BPFA = Beta-Bernoulli Process Factor Analysis

• Factor analysis

• Decompose signal into a linear approximation of factors and weights
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𝒙𝑖 = 𝐃𝒘𝑖 + 𝝐𝑖
Original data 

samples Dictionary matrix of 
“prototypical” signals

Noise and 
residual

Dictionary element 
weights (vector)

Figure from: A. Stevens, et al. Microscopy. 63, 41 (2014).
Note: 𝑤𝑖 = 𝛼𝑖 in this paper’s notation

An image patch (𝒙𝑖) can be represented 
by a dictionary (𝐃) of representative 
patches, with each element weighted by 
a factor from 𝒘 (plus some noise 𝝐)



BPFA = Beta-Bernoulli Process Factor Analysis
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• How to find 𝐃 and 𝒘?

• Bayesian beta-Bernoulli Process

• We infer the underlying signal 𝒙𝑖 = 𝐃𝒘𝑖 by:

• Placing Bayesian priors on 𝐃, 𝒘𝑖, and 𝝐𝑖

• Assuming that 𝒘𝑖 is sparse

• Iterate to obtain approximation of 𝒙 using a 
sparse representation from the elements of 𝐃

Details about algorithms in:
• M. Zhou, et al., Nonparametric bayesian dictionary learning for analysis of noisy and incomplete images, IEEE Trans. Image Process. 21, 130–144 (2012)
• Z. Xing, et al., Dictionary Learning for Noisy and Incomplete Hyperspectral Images, SIAM J. Imaging Sci. 5, 33–56 (2012). 

https://doi.org/10.1109/TIP.2011.2160072
https://doi.org/10.1137/110837486


What does it look like in practice?
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• Example EDS maps

• ~ 256 x 200 pixels

• 5, 10, and 15 kV Vacc

• Analyzing nano-scale precipitates in aluminum silicates



BPFA on sparse EDS maps
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• BPFA successfully reconstructs the EDS data
• Dictionary of 16 “spectra”
• Signal to noise improvement

• Artifacts
• Spikes in dictionary elements
• May need longer to fully converge



BPFA on sparse EDS maps
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BPFA on more sparse EDS maps
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• Again, successful reconstruction
• Significant contrast enhancement in all line images

• Is enhancement of Ti a real effect, or artifact?



34



Promising results, but lots more work to be done

• Comparison of reconstructions to “ground truth” acquisitions

• i.e. how do reconstructions compare to maps acquired with longer dwells?

• Investigating impacts on quantification, component analysis, phase mapping, 
etc.

• Expansion to three dimensions

• Should be able to go even sparser in each 2D map by incorporating information from 
adjacent slices

• Can these reconstructions be done in real-time?

• Optimization needed for practical on-tool use
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Conclusions and Parting Thoughts
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Computational microscopy is coming!

• With ever-growing data sizes and improving computational resources, we 
are at the very beginning of this field

• These methods are very powerful, but their implications and validity are still 
not well understood

• Uncertainties, artefacts, etc.

• Machines will soon be better at this than we are

• Better to make sure you’re on the same team as them ☺
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Thank you!

And Happy Birthday Dale!

Questions/comments?
joshua.taillon@nist.gov

(301) 975-2913

mailto:joshua.taillon@nist.gov

