AB INITIO DISCOVERY OF NOVEL CRYSTAL STRUCTURE IN BARIUM AND SODIUM-CALCIUM COMPOUNDS UNDER PRESSURE USING DFT

Joshua A. Taillon

William W. Tipton Richard G. Hennig

Department of Materials Science and Engineering Cornell University

Overview

- Ab initio computational study at high pressures
 - Elemental barium
 - Immiscible sodium-calcium binary alloy
- Used density functional theory with a genetic algorithm
- Predicted ground state structures of barium a priori
 - Determined ground state transition pressures and phase stability
 - Discovered new ground state phase at moderate pressures
 - Examined complex Ba-IV phase in detail
- Demonstrated feasibility of methods with binary alloy
 - No stable compounds found, but promising results

Proposed vs. Actual Outcomes

Proposed

- Elemental studies
 - Barium, Beryllium, and Magnesium
 - Full structural and electronic characterization of each
 - Time permitting, superconductivity calculations
- Na-Ca Binary Alloy
 - Application of genetic algorithm

Actual

- Elemental studies
 - Barium only!
 - Implemented and tested genetic algorithm
 - Phase stability calculations
 - Discovered new phase and investigated complex phase
 - No electronic analysis
- Na-Ca Binary Alloy
 - Initial results from genetic algorithm

Motivation

- Why study high pressures?
 - Superconductivity!
 - We still don't really know why [1]
 - Incredible material properties
 - Unexpected structural changes
 - Electronic transitions
- Elemental Barium
 - Interesting phase space
 - Significant test of our method
- Sodium-Calcium Binary Alloy
 - Independent elements display remarkable properties
 - Composition space search

Figure 1: Example of unexpected electronic/optical transition in sodium at high pressure. [2]

Brief Overview of Methods

- Density Functional Theory (DFT)
 - Implemented with VASP
 - Functionals of charge density
 → ground state energy
 - Accurate, and easier than experimental studies
- Genetic Algorithm (GA) Search
 - Developed by Will Tipton [3]
 - Optimizes randomly generated structures based on evolutionary techniques
 - Minimizes either enthalpy/atom or distance from a convex hull

Figure 2: Example of slicing crossover and convex hull [3].

Barium Structure Search

Pressure [Gpa]	Structures			
0	α-U	P2 ₁ /m-6	BCC	C2/m-5
	FCC	BCT	Simple Hex.	
10	HCP	α-U	Imm2-4	C2/m-5
30	HCP	Pnma-4	FCC	
60	α-Sm	HCP	α-U	P3m1-5
100	HCP	α-Sm	FCC	
200	HCP	α-Sm	FCC	
300	HCP	α-Sm	FCC	

Table I: Results of barium genetic algorithm search.

- Structure search at seven pressures
- Discovered every experimental phase (except Ba-IV)
- Discovered a number of symmetry broken and transition structures
- New α -Samarium phase
- Condensation of phase space at high pressures

Barium Phase Stability

Figure 3: Calculated enthalpy vs. pressure curves for barium, relative to BCC phase.

Table II: Experimentally observed pressure-induced phase transformations at room temperature, in GPa [4].

Senior Thesis Oral Presentation | Results

Incommensurate Ba-IV

- What is incommensurate?
 - Two (or more) distinct unit cells in one structure
 - Irrational lattice vector ratio
- Ba-IV (at 12.6 GPa) [4]
 - Experiment 1.388 ratio
 - Theory 1.333 ratio
- Computational study by Reed and Ackland [5]
 - Predicted stability of Ba-IV
 - Utilized an unphysical correction:

•
$$\Delta E = \frac{V}{4} \times C_{33} \left[1 - \frac{2}{3} \frac{c_{\text{host}}}{c_{\text{guest}}}\right]^2$$

Figure 4: 4/3 commensurate analog of Ba-IV used in our calculations. Its space group is *I4/mcm* and has 32 atoms at Wyckoff positions *4a*, *4c*, *8h* (x=0.35271), and *16I* (x=-0.35011 and z=-0.33503) at 12.6 GPa.

Incommensurate E	3a-IV
------------------	-------

 Vol/atom
 C₃₃
 c-ratio

 31 Å
 50 GPa
 1.333

A Novel Barium Phase!

Figure 5: Close packed structures of barium. (a) HCP simple ...ABA... stacking; (b) FCC three layer ...ABCA... pattern; (c) α-Sm nine-layer ...ABABCBCACA... pattern. • α-Samarium

- Never before seen in barium
- Proposed true ground state of lithium [6]
- Close packed
- Complicated stacking pattern
 - Incomplete electron transfer?
- Electronic analysis needed

Sodium-Calcium Structure Search

- Composition search takes much longer than elemental structure search
- No stable compounds found yet
- Proved feasibility of method

Figure 6: Initial Na-Ca binary search results at 50 GPa. No stable intermediates were discovered. Red structures are stable; cyan deserve more investigation.

Summary

- Performed genetic algorithm structure search on barium
 - Discovered all but one experimentally known phase
 - Discovered new phase (α-Samarium)
- Calculated phase stability as function of pressure
 - Results deviate from experimental observations
 - Predict new α -Sm ground state from 28-46 Gpa
- Characterized commensurate analog of Ba-IV
 - Contest previous results from literature
 - Still not able to predict stability without a significant correction
- Performed initial Na-Ca binary alloy structure search
 - Proved feasibility of methods, but no stable structures found

Future Work

- Elemental materials
 - Investigate larger analogs of Ba-IV
 - Full electronic analysis of new barium phase
 - Search for other close-packed structures in barium
 - Search for α -Samarium structure in similar elements
- Sodium-calcium binary alloy
 - Continue structure search
 - Constrain search to smaller composition space
 - Investigate promising compounds
 - Perform search at more pressures

Acknowledgements/References

- Professor Hennig for conversations and guidance
- Will Tipton for methods and general assistance
- Derek Stewart for assistance with the Nanolab cluster

- Calculations for this work were performed on the Nanolab Computing Cluster at the Cornell Nanoscale Facility
- This research used computational resources of the Computational Center for Nanotechnology Innovation at Rensselaer Polytechnic Institute
- This research was supported in part by the NSF through TeraGrid resources provided by the Texas Advanced Computing Center (TACC) under grant number TG-DMR050028N.

References:

- [1] A. J. Leggett, "What do we know about high Tc?," *Nature Physics*, vol. 2, no. 3, pp. 134–136, 2006.
- [2] Y. M. Ma, M. Eremets, A. R. Oganov, Y. Xie, I. Trojan, S. Medvedev, A. O. Lyakhov, M. Valle, and V. Prakapenka, "Transparent dense sodium," *Nature*, vol. 458, no. 7235, pp. 182, 2009.
- [3] W. Tipton, "A genetic algorithm for crystal structure prediction," *lithium.ccmr.cornell.edu/wtipton/gasp/*, 2007. *Report available at request from author*.
- [4] R. J. Nelmes, D. R. Allan, M. I. McMahon, and S. A. Belmonte, "Self-hosting incommensurate structure of barium IV," *Physical Review Letters*, vol. 83, no. 20, pp. 4081–4084, 1999.
- [5] S. K. Reed and G. J. Ackland, "Theoretical and computational study of high-pressure structures in barium," *Physical Review Letters*, vol. 84, no. 24, pp. 5580–5583, 2000.
- [6] A. W. Overhauser, "Crystal structure of lithium at 4.2 k," *Physical Review Lett*ers, vol. 53, pp. 64–65, Jul 1984.

Senior Thesis Oral Presentation | End Matter