Summary_

Hello!

I am an *internationally recognized* expert in *scientific data management*, real-world *data engineering* solutions, *scientific programming*, and materials research. Since 2018. I have spearheaded efforts to modernize data management practices at NIST in diverse domains ranging from electron microscopy, to mechanical materials testing, to biosystems and biomaterials research. I have led technical development on a range of impactful projects, focusing on Laboratory Information Management (LIMS) and experimental metadata capture, including both backend systems and frontend interfaces. I have led federally-funded working groups on advancing data management practices in materials research and am regularly invited to speak at both international and domestic scientific conferences.

RESEARCH SOFTWARE ENGINEER · MATERIALS RESEARCH ENGINEER · DATA SCIENTIST AND SOLUTIONS ARCHITECT Boulder, CO 🔺 jat255@gmail.com | 🖀 www.joshuataillon.com | 🖸 jat255 | 🛅 jat255 | 📾 Google Scholar Profile

I have a passion for open source software and sharing my knowledge and experience with others. I am a Software Carpentries certified instructor and often run tutorial sessions and short course seminars on both general and scientific programming. I place great emphasis on building **comprehen**sible, well documented, and scalable software solutions that empower researchers to accelerate scientific discoveries and leverage the latest AI/ML strategies. Outside of work, I regularly publish and contribute to various open-source side projects, have been a Linux enthusiast since 2010, enjoy building home and personal data automation pipelines and self-hosting applications, and am an avid cyclist.

Current Appointment

National Institute of Standards and Technology

MATERIALS RESEARCH ENGINEER · DATA SCIENCE GROUP · OFFICE OF DATA AND INFORMATICS

Technical Skills

Scientific/General Programming

Software Development/DevOps

Data Engineering and Processing

Data Presentation Machine Learning

Python, JavaScript, R, MATLAB, OpenCV, Linux coreutils/bash, Java, LaTeX, HPC, Make Owner/maintainer of projects totaling nearly 1,000 stars on GitHub Git, Docker, Kubernetes, Github Actions, Azure pipelines, AWS (S3, EC2, etc.), Gitlab CI/CD, Ansible, Chef, pytest, Test-driven development, Python packaging (conda, poetry, uv, PyPI, etc.), Proxmox, Reverse engineering, Bluetooth LE communication, API consumption, Sphinx documentation, mkdocs SQL (PostgreSQL, SQLite, SQLAlchemy, SQLModel), Pandas, NumPy, NoSQL databases, web scraping, InfluxDB, Apache Airflow, Data modeling: LinkML, pydantic, JSONSchema, JSON-LD, XML Schema/XSLT Plotly Dash, Streamlit, Jupyter Notebooks, Django, Matplotlib, Reveal.js, RShiny, Jekyll, Hugo Scikit-learn, Keras, TensorFlow, unsupervised learning, signal separation, compressed sensing **Materials Characterization** Extensive experience with FIB (Ga⁺/Xe⁺), SEM, TEM, Nanotomography, EDS, EELS, XPS, EBSD, XRD, etc. Presentation/Writing 11 reviewed publications, 13 proceedings, 50+ presentations (21 invited) – 712 total citations; h-index: 11

Education

University of Maryland, College Park

Ph.D./M.S. in Materials Science and Engineering · GPA: 3.964

• Thesis: Advanced analytical microscopy at the nanoscale: Applications in wide bandgap and solid oxide fuel cell materials

- Advised by Prof. Lourdes Salamanca-Riba
- NSF Graduate Research Fellow

Cornell University

B.S. IN MATERIALS SCIENCE AND ENGINEERING · GPA: 3.872

- Graduated Magna cum laude with departmental honors
- · Minor in Applied Economics and Management
- · Senior research thesis in computational materials science

August 2016/May 2014

Ithaca, NY June 2011

College Park, MD

Boulder, CO

September 2018 - PRESENT

National Institute of Standards and Technology

MATERIALS RESEARCH ENGINEER · OFFICE OF DATA AND INFORMATICS · DATA SCIENCE GROUP

Staff scientist within the Material Measurement Laboratory at NIST, focused on working directly with other researchers to address data and workflow challenges through novel data management solutions. I have in-depth technical proficiency as well as experience leading both project teams and federally-funded working groups. Selected highlights from my time at NIST include:

- Designed, implemented, deployed, and maintained 🖸 usnistgov/NexusLIMS a laboratory information management system (LIMS) to automatically harvest, categorize, and display data from dozens of electron microscopes and associated spectrometers (Python, Django, SQLite, MongoDB)
- Published ETSpy 🖸 usnistgov/etspy a HyperSpy extension package to facilitate electron tomographic data analysis (Python, Jupyter, Sphinx) • Proposed, architected, and implemented an internal staff scheduling application to manage in-person room utilization during the COVID-19 pan-
- demic featuring calendaring, approvals, notifications, etc. Used by over 800 employees during the return to hybrid work schedules. (PostgreSQL, RShiny, PostgREST, Office 365 APIs, Python)
- Identified and deployed an electronic lab notebook platform (ELN) for use by research staff at NIST. Developed data models for microbial research workflows and an automated experiment metadata validation and export pipeline. (LinkML, pydantic, Python, Web APIs)
- Co-chaired a working group of the Materials Research Data Alliance (MaRDA) focused on producing recommendations for the use of LIMS in materials research environments (results published in the MRS Bulletin)
- Maintain and manage community for open-source hyperspectral data analysis software 🖸 hyperspy/hyperspy (Python)

National Institute of Standards and Technology

NRC POSTDOCTORAL RESEARCH FELLOW · MATERIALS MEASUREMENT SCIENCE DIVISION

Independently developed research proposal (accepted by the National Research Council) to explore the applications of compressive sensing during 3D SEM imaging and chemical analysis in the FIB-SEM in order to radically improve experimental throughput

- Innovated the use of beta process factor analysis to enhance interpretability of chemical EDS maps (using Matlab and Python)
- Ouantified hyperspectral reconstruction quality using multiple image quality metrics (e.g. SNR, DIVINE, BRISOUE, etc.)
- Regularly contributed development efforts to open-source hyperspectral data analysis software (i.e. HyperSpy)
- Collaboration with Dr. Keana Scott

University of Maryland

NSF GRADUATE RESEARCH FELLOW · DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING

Research focused on development of electron and ion beam experimental and data processing methods to characterize various materials systems. Frequently collaborated with outside groups to train students on experimental equipment and data analysis to solve materials challenges

- Analytical microscopy characterization of interfacial states at the 4H-SiC/SiO₂ interface:
- Formulated an EELS data processing pipeline for research group, transitioning from one-off GUI-based analyses to Jupyter notebooks, dramatically enhancing data visualization, readability, and reproducibility
- Used high resolution TEM and electron energy loss spectroscopy to investigate the effects of post-processing on SiC MOSFETs
- Discovered unique electronic states of silicon in nitric oxide annealed devices using unsupervised machine learning EELS analyses
- Developed oxide spin-etching process with monolayer sensitivity for XPS depth profiling
- Collaboration with the U.S. Army Research Laboratory, Auburn University, and Rutgers University

Three-dimensional nanotomographic characterization of solid oxide fuel cell cathode degradation:

• Established FIB-SEM 3D methods to reconstruct SOFC cathode microstructures, collecting and processing over 10 GB of image data per experiment

Tool to automatically process FIT workout activity files produced by various indoor bike training platforms to make them compatible with Garmin's

Service to pair and receive button presses from the "Zwift Click" Bluetooth LE button. Involved reverse engineering of the Bluetooth LE protocol and

JOSHUA A. TAILLON · CURRICULUM VITAE

- Developed innovative image processing and microstructure quantification routines using Python, MATLAB, and Avizo .
- Quantified changes in SOFC cathode structures as a function of H₂O, CO₂, and Cr-vapor exposure
- Wrote a Python library to compute uncertainty confidence intervals for SOFC findings using a sub-volume bootstrapping algorithm
- Software implementations were open-sourced to enhance scientific reproducibility (Repository Link)
- Collaboration with Prof. Eric Wachsman

Cornell University

UNDERGRADUATE SENIOR THESIS RESEARCH · DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING

- Developed computational materials structure search methods using distributed high performance computing resources
- Discovered novel crystal structure of barium using genetic algorithm search techniques and density functional theory calculations
- Processed over 200GB of computation output using custom bash scripts
- Created descriptive visualizations of high-pressure solution space using gnuplot
- Awarded for "Best Overall Thesis" and 1st place in Senior Thesis poster competition by departmental faculty

translating button presses into simulated keyboard strokes for use in programs other than Zwift.

Advised by Asst. Prof. Richard Hennig (now at University of Florida)

Programming Side Projects

Fit File Faker

web services **Zwift Click Handler**

PYTHON, BLUETOOTH LE

Ργτηον

2024

2

2024

iat255/Zwift_click_handling - 35 stars

🖸 jat255/Fit-File-Faker – 29 stars

Ithaca, NY

August 2010 - May 2011

Boulder. CO

Gaithersburg, MD

College Park, MD

July 2011 - August 2016

October 2016 - September 2018

September 2018 - PRESENT

PackageMate

🖸 jat255/solar-inverter-datalogger

2021

REACT, MONGODB, EXPRESS.JS, NODE

Simple web app to centralize tracking of shipped packages by connecting various shipping service APIs (or scraping status webpages, where necessary) and presenting them in one coherent interface

Solar Data Logger

PYTHON, BLUETOOTH LE, INFLUXDB, GRAFANA, ANDROID REVERSE ENGINEERING

Service deployed on a Raspberry Pi Zero to extract real-time production data from my home's photovoltaic inverter via Bluetooth Low Energy communication. Data is logged to an InfluxDB time-series database, with visualizations and alerting built in a Grafana dashboard. This project was motivated by the lack of data provided by the system as-installed, so I reverse-engineered the vendor's Android application and built my own monitoring system that has been running for five years with minimal intervention.

Honors_

AWARDS

Jul. 2023	2023 MML Science Data Management and Capabilities Accolade, NIST Materials Measurement Laboratory	Boulder, CO		
Jul. 2021	2021 Service and Support to MML Accolade, NIST Materials Measurement Laboratory	Boulder, CO		
Jul. 2020	2020 MML Science Data Management and Capabilities Accolade, NIST Materials Measurement Laboratory	Boulder, CO		
Nov. 2016	Graduate Student Award, Materials Research Society Fall Meeting	Boston, MA		
June 2015	Materials Science Award, University of Maryland ResearchFest	College Park, MD		
June 2014	Entrepreneurship Award, University of Maryland NanoDay Competition	College Park, MD		
Dec. 2013	Outstanding Student Presentation, Materials Research Society Fall Meeting	Boston, MA		
May 2011	First Place, Cornell MS&E Senior Thesis Poster Competition	Ithaca, NY		
May 2011	Best Overall Thesis, Cornell MS&E Senior Thesis Competition	Ithaca, NY		
Fellowships & Grants				
2021 - 2022	Collaborating for Impact Now Program , National Institute of Standards and Technology Internal grant competition (\sim \$200k award – 6 awardees out of \sim 100 applications)	Gaithersburg, MD		
2016 - 2018	NRC Research Associateship, National Research Council	Gaithersburg, MD		
2013 - 2016	Graduate Research Fellowship, National Science Foundation	College Park, MD		
2011 - 2016	University Fellowship, University of Maryland	College Park, MD		
2010 - 2011	MS&E Junior Fellowship, Cornell University Department of Materials Science and Engineering	Ithaca, NY		

Research Interests

Scientific Data Management	Applications of modern data science and engineering to real-world laboratory workflows through automation, interoperable data systems, and applications of artificial intelligence
Open-source Software	Bringing advanced data analysis methods to the scientific community through open-source software development, training, and collaboration
Community Schema Development	Convening scientific communities to form consensus on terminology, data models, and formal vocabularies to better enable FAIR and machine-actionable data in the physical sciences
Computational Microscopy	Novel applications of FIB-SEM and TEM methodologies and data processing for advanced materials analysis, bridging the gap between advanced signal processing and materials microscopy
Compressive Sensing	Speeding data collection and reducing electron dose through intelligent signal acquisition strategies
Autonomous Metrology	Improving microscopy data collection rates and results through intelligent (and autonomous) determination of measurement parameters using active learning
Machine Learning for Materials Materials Research	Utilizing unsupervised methods to discover hidden relationships in hyperspectral datasets Applying cutting edge characterization methodologies in a wide range of materials systems, including alternative energy, wide bandgap, and energy conversion materials

Teaching and Professional Experience

National Institute of Standards and Technology

MATERIALS RESEARCH ENGINEER · OFFICE OF DATA AND INFORMATICS · DATA SCIENCE GROUP

· Lead annual introductory courses on Python, bash, git, R, and SQL for existing NIST staff and summer undergraduate research fellows

- Regularly lead tutorial short courses on the use of the HyperSpy python library for interactive data analysis at international conferences such as the annual *Microscopy and Microanalysis* meeting (typically \approx 100 attendees)
- Invited to teach multiple data analysis courses at the Canadian Center for Electron Microscopy's Summer School program

Boulder, CO September 2016 - PRESENT

Cornell University

Undergraduate Teaching Assistant · Department of Computer Science

• Teaching Assistant for CS 1110: Introduction to Computing Using Java and CS 1130: Transition to Object Oriented Programming

- Led weekly laboratory sessions of thirty students
- · Assisted students during weekly office hours, answering questions and administering quizzes
- Graded weekly assignments and communicated detailed student feedback for every submission
- Courses included engineering and liberal arts students, requiring effective communication across multiple disciplines

Amphenol PCD

INDUSTRIAL ENGINEERING CO-OP

- Worked closely with the Industrial Engineering Manager to bring new industrial connector products to the market
- Led the design of a custom telecommunications connector, proposing designs and tweaking the product to meet the customer's needs
- Supervised manufacturing staff during the initial quantity production of the new product; designed manufacturing work instructions
- Designed 3D models and engineering drawings for industrial and military/aerospace product lines
- Supported the Industrial Marketing and Sales Manager as an engineering representative in customer interactions

Professional Affiliations

Microanalysis Society

Computer Activities Committee Chair (appointed) Executive Council Director (elected) Member	2024 - PRESENT 2021-2023 2015 - PRESENT
Materials Research Society Member	2012 - PRESENT
Research Data Alliance	2018 - PRESENT

Publications

Research productivity

SUMMARY STATISTICS:

- 11 published peer-reviewed articles; 13 conference proceedings
- 21 invited presentations; 33 contributed presentations
- 712 unique citations; h-index: 11

REFEREED JOURNAL ARTICLES (11)

MARDA FAIR MATERIALS MICROSCOPY AND LIMS WORKING GROUPS' COMMUNITY RECOMMENDATIONS

Joshua A. Taillon, Edward Barnard, Laura M. Bartolo, Maria K. Y. Chan, Eric A. Stach, Mitra L. Taheri, L. Catherine Brinson, Peter W. Voorhees *MRS Bulletin*, in press, 2025.

ETSPY: A HYPERSPY EXTENSION PACKAGE FOR ELECTRON TOMOGRAPHY DATA PROCESSING AND RECONSTRUCTION Andrew A. Herzing, <u>Joshua A. Taillon</u>

Micron, vol. 190, p. 103774, 2025. DOI: 10.1016/j.micron.2024.103774

- NEXUSLIMS: A LABORATORY INFORMATION MANAGEMENT SYSTEM FOR SHARED-USE ELECTRON MICROSCOPY FACILITIES Joshua A. Taillon, Thomas F. Bina, Raymond L. Plante, Marcus W. Newrock, Gretchen Greene, June W. Lau *Microscopy and Microanalysis*, vol. 26, no. 3, pp. 511–527, 2021. DOI: 10.1017/S1431927621000222
- CHARACTERIZATION OF ZINC CARBOXYLATES IN AN OIL PAINT TEST PANEL Christine Romano, Thomas Lam, G Asher Newsome, Joshua A. Taillon, Nicole Little, Jia-sun Tsang Studies in Conservation, 2019. DOI: 10.1080/00393630.2019.1666467

Analysis of the electronic and chemical structure in boron and phosphorus passivated $4H-SiC/SiO_2$ interfaces using HRTEM and STEM-EELS

Joshua A. Taillon, Christopher Klingshirn, Sarit Dhar, Tsvetanka S. Zheleva, Aivars J. Lelis, Lourdes G. Salamanca-Riba Applied Physics Letters, 2018. DOI: 10.1063/1.5053595

IMPROVING MICROSTRUCTURAL QUANTIFICATION IN FIB/SEM NANOTOMOGRAPHY

Joshua A. Taillon, Christopher Pellegrinelli, Yilin Huang, Eric D. Wachsman, Lourdes G. Salamanca-Riba Ultramicroscopy, vol. 184, pp. 24–38, 2018. DOI: 10.1016/j.ultramic.2017.07.017

TEACHING AN OLD MATERIAL New TRICKS: EASY AND INEXPENSIVE FOCUSED ION BEAM (FIB) SAMPLE PROTECTION USING CONDUCTIVE POLYMERS Joshua A. Taillon, Valery Ray, Lourdes G. Salamanca-Riba

Microscopy and Microanalysis, vol. 23, no. 4, pp. 872–877, 2017. doi: 10.1017/S143192761700054X

NEAR-FIELD OPTICAL PROPERTIES OF FULLY ALLOYED NOBLE METAL NANOPARTICLES Chen Gong, Mariama Rebello Sousa Dias, Garrett C. Wessler, <u>Joshua A. Taillon</u>, Lourdes G. Salamanca-Riba, Marina S. Leite

Advanced Optical Materials, vol. 5, no. 1, p. 1600568, 2016. DOI: 10.1002/adom.201600568

LONG-TERM CR POISONING EFFECT ON LSCF-GDC COMPOSITE CATHODES SINTERED AT DIFFERENT TEMPERATURES Chunyan Xiong, <u>Joshua A. Taillon</u>, Christopher Pellegrinelli, Yi-Lin Huang, Lourdes G. Salamanca-Riba, Bo Chi, Li Jian, Jian Pu, Eric D. Wachsman

Beverly, MA

Fall 2009; Summer 2010

August 2008 - May 2011

Ithaca, NY

Journal of The Electrochemical Society, vol. 163, no. 9, F1091–F1099, 2016. DOI: 10.1149/2.0841609jes

BORON-DOPED FEW-WALLED CARBON NANOTUBES: NOVEL SYNTHESIS AND PROPERTIES Colin Preston, Da Song, Joshua A. Taillon, John Cumings, Liangbing Hu Nanotechnology, vol. 27, no. 44, p. 445601, 2016, DOI: 10.1088/0957-4484/27/44/445601

Systematic structural and chemical characterization of the transition layer at the interface of NO-annealed 4H-SiC/SiO₂ metal-oxidesemiconductor field-effect transistors

Joshua A. Taillon, Joon Hyuk Yang, Claude A. Ahyi, John Rozen, John R. Williams, Leonard C. Feldman, Tsvetanka S. Zheleva, Aivars J. Lelis, Lourdes G. Salamanca-Riba

Journal of Applied Physics, vol. 113, no. 4, p. 044517, 2013. DOI: 10.1063/1.4789924

Conference Proceedings (13)

EUCLID-NEXUSLIMS: A CUSTOMIZABLE DATA MANAGEMENT SOFTWARE FOR MICROSCOPISTS WITH CLOUD COMPUTING OUTLOOK Ao Liu, Weinan Si, June Lau, Joshua A. Taillon, Roberto Reis, Laura Bartolo *Microscopy and Microanalysis*, vol. 28, no. S1, pp. 3044–3045, 2022. doi: 10.1017/S1431927622011369

Lessons Learned in Building a Modern Microscopy Data Infrastructure at NIST Joshua A. Taillon

Microscopy and Microanalysis, vol. 28, no. S1, pp. 2912–2913, 2022. DOI: 10.1017/S1431927622010923

- NexusLIMS: Leveraging Shared Microscopy Resources for Data Analysis with a Configurable Laboratory Information Management System Joshua A. Taillon, Raymond L. Plante, Marcus W. Newrock, June W. Lau, Gretchen Greene Microscopy and Microanalysis, vol. 26, no. 52, pp. 140–141, 2020. doi: 10.1017/S14319276200233140
- HARVESTING MICROSCOPY EXPERIMENTAL CONTEXT WITH A CONFIGURABLE LABORATORY INFORMATION MANAGEMENT SYSTEM Joshua A. Taillon, Rachel F. Devers, Raymond L. Plante, Marcus W. Newrock, June W. Lau, Gretchen Greene Microscopy and Microanalysis, vol. 25, no. 52, pp. 140–141, 2019. DOI: 10.1017/S1431927619001430

AN OPEN EVALUATION OF HYPERSPECTRAL UNMIXING STRATEGIES FOR EDS ANALYSIS Joshua A. Taillon

Microscopy and Microanalysis, vol. 24, no. S1, pp. 752–753, 2018. DOI: 10.1017/S1431927618004257

Compressive Sensing Reconstruction for EDS Analysis

Joshua A. Taillon

Microscopy and Microanalysis, vol. 24, no. S1, pp. 486–487, 2018. DOI: 10.1017/S1431927618002921

ELECTRON MICROSCOPY (BIG AND SMALL) DATA ANALYSIS WITH THE OPEN SOURCE SOFTWARE PACKAGE HYPERSPY Francisco Pena, Tomas Ostasevicius, Vidar Tonaas Fauske, Pierre Burdet, Petras Jokubauskas, Magnus Nord, Mike Sarahan, Eric Prestat, Duncan N. Johnstone, <u>Joshua A. Taillon</u>, al.

Microscopy and Microanalysis, vol. 23, no. S1, pp. 214–215, 2017. DOI: 10.1017/S1431927617001751

THREE DIMENSIONAL MICROSTRUCTURAL CHARACTERIZATION OF CATHODE DEGRADATION IN SOFCS USING FIB/SEM AND TEM Joshua A. Taillon, Christopher Pellegrinelli, Yilin Huang, Eric D. Wachsman, Lourdes G. Salamanca-Riba Microscopy and Microanalysis, vol. 21, no. S3, pp. 2161–2162, 2015. DOI: 10.1017/S1431927615011587

CHARACTERIZATION OF THE OXIDE-SEMICONDUCTOR INTERFACE IN 4H-SIC/SIO₂ STRUCTURES USING TEM AND XPS <u>Joshua A. Taillon</u>, Karen Gaskell, Gang Liu, Leonard C. Feldman, Sarit Dahr, Tsvetanka S. Zheleva, Aivars J. Lelis, Lourdes G. Salamanca-Riba *Microscopy and Microanalysis*, vol. 21, no. S3, pp. 1537–1538, 2015.

- INVESTIGATING THE RELATIONSHIP BETWEEN OPERATING CONDITIONS AND SOFC CATHODE DEGRADATION Christopher Pellegrinelli, Yi-Lin Huang, Joshua A. Taillon, Lourdes G. Salamanca-Riba, Eric D. Wachsman ECS Transactions, vol. 68, no. 1, pp. 773–784, 2015. DOI: 10.1149/06801.0773ecst
- A STUDY OF SOFC CATHODE DEGRADATION IN H₂O ENVIRONMENTS Christopher Pellegrinelli, Yi-Lin Huang, <u>Joshua A. Taillon</u>, Lourdes G. Salamanca-Riba, Eric D. Wachsman ECS Transactions, vol. 64, no. 2, pp. 17–28, 2014. DOI: 10.1149/06402.0017ecst
- TOWARDS A FUNDAMENTAL UNDERSTANDING OF THE CATHODE DEGRADATION MECHANISMS Eric D. Wachsman, Yi-Lin Huang, Christopher Pellegrinelli, <u>Joshua A. Taillon</u>, Lourdes G. Salamanca-Riba ECS Transactions, vol. 61, no. 1, pp. 47–56, 2014. DOI: 10.1149/06101.0047ecst

THREE DIMENSIONAL MICROSTRUCTURAL CHARACTERIZATION OF CATHODE DEGRADATION IN SOFCS USING FOCUSED ION BEAM AND SEM Joshua A. Taillon, Christopher Pellegrinelli, Yilin Huang, Eric D. Wachsman, Lourdes G. Salamanca-Riba ECS Transactions, vol. 61, no. 1, pp. 109–120, 2014. DOI: 10.1149/06101.0109ecst

OTHER PUBLICATIONS (7)

NSF FAIROS MATERIALS RESEARCH DATA ALLIANCE WORKING GROUPS TO HOLD TOWN HALL MEETING AT 2024 MRS SPRING MEETING & EXHIBIT Edward S. Barnard, Maria K. Y. Chan, Eric A. Stach, Joshua A. Taillon, al. *MRS Bulletin*, vol. 49, no. 3, pp. 285–286, 2024. doi: 10.1557/s43577-024-00676-y

A ROADMAP FOR LIMS AT NIST MATERIAL MEASUREMENT LABORATORY Gretchen Greene, Jared Ragland, Zachary Trautt, June Lau, Raymond Plante, <u>Joshua A. Taillon</u>, al. *NIST Technical Note*, TN 2216, 2022. DOI: 10.6028/NIST.TN.2216

NexusLIMS: a Python Package for EM Experiment Metadata Management Joshua A. Taillon

NIST Public Data Repository, 2021. DOI: 10.18434/mds2-2355

NEXUS-EXPERIMENT: AN XML SCHEMA FOR DESCRIBING DATA COLLECTED FROM ELECTRON MICROSCOPES Raymond L. Plante, <u>Joshua A. Taillon</u>, June W. Lau, Gretchen Greene, Marcus Newrock

CHARACTERIZATION OF ZINC CARBOXYLATES IN AN OIL PAINT TEST PANEL [DATASET] Christine Romano, Thomas Lam, G Asher Newsome, <u>Joshua A. Taillon</u>, Nicole Little, Jia-sun Tsang *NIST Public Data Repository*, 2019. DOI: 10.18434/M32082

Advanced Analytical Microscopy at the Nanoscale: Applications in Wide Bandgap and Solid Oxide Fuel Cell Materials

Joshua A. Taillon

Ph.D. Thesis, 2016. DOI: 10.13016/m29806

AB INITIO DISCOVERY OF NOVEL CRYSTAL STRUCTURE STABILITY IN BARIUM AND SODIUM-CALCIUM COMPOUNDS UNDER PRESSURE USING DFT Joshua A. Taillon, William W. Tipton, Richard G. Hennig arXiv e-prints, 2012. arxiv: https://arxiv.org/abs/1207.3320

Presentations _____

INVITED (21)

AN UPDATE FROM THE MARDA LIMS WORKING GROUP Joshua A. Taillon, Eric Stach, <i>et al.</i> Invited talk at the 2024 MaRDA Virtual Annual Meeting	Virtual Feb. 2024
LESSONS LEARNED BUILDING A MODERN MICROSCOPY DATA INFRASTRUCTURE AT NIST Joshua A. Taillon Invited talk at the Leibniz Supercomputing Centre (Germany)	Munich, Germany Oct. 2023
INTRODUCING THE MARDA LIMS WORKING GROUP: LIMS SCHEMA DEVELOPMENT Joshua A. Taillon Invited talk at the 21st RDA Plenary Session	Salzburg, Austria Oct. 2023
LESSONS LEARNED EVALUATING AND DEPLOYING ELECTRONIC LABORATORY NOTEBOOKS AT NIST Joshua A. Taillon Invited talk at the <i>Leibniz Supercomputing Centre</i> (Germany)	Virtual (Munich, Germany) Sept. 2023
AN OVERVIEW OF THE NIST MICROSCOPY DATA ECOSYSTEM <u>Joshua A. Taillon</u> Poster presented at MaRDA Working Group Meeting	Evanston, IL May 2023
OVERVIEW OF NEXUSLIMS USAGE AND DEVELOPMENT Joshua A. Taillon Invited talk at Northwestern University	Evanston, IL May 2023
LESSONS LEARNED BUILDING A MODERN MICROSCOPY DATA INFRASTRUCTURE AT NIST Joshua A. Taillon Invited talk at the U.S. Geological Survey	Denver, CO Oct. 2022
LESSONS LEARNED BUILDING A MODERN MICROSCOPY DATA INFRASTRUCTURE AT NIST Joshua A. Taillon Invited talk at University of Wisconsin – Madison	Virtual (Madison, WI) Oct. 2022
LESSONS LEARNED BUILDING A MODERN MICROSCOPY DATA INFRASTRUCTURE AT NIST Joshua A. Taillon Invited talk at Pacific Northwest National Laboratory	Virtual (Richland, WA) Sept. 2022
LESSONS LEARNED IN BUILDING A MODERN MICROSCOPY DATA INFRASTRUCTURE AT NIST Joshua A. Taillon Invited talk at the 2022 Microscopy and Microanalysis Meeting	Portland, OR Aug. 2022
DATA ANALYSIS IN MATERIALS SCIENCE Joshua A. Taillon, Carter Francis 8-hour Sunday Short Course presented at the 2022 Microscopy and Microanalysis Meeting	Portland, OR July 2022
OPEN-SOURCE HYPER-DIMENSIONAL MATERIALS ANALYTICS USING HYPERSPY Joshua A. Taillon Invited talk at the 2021 MS&T Meeting	Virtual Oct. 2021
DATA ANALYSIS IN MATERIALS SCIENCE Joshua A. Taillon, Eric Prestat, Carter Francis, Håkon Wiik Ånes 8-hour Sunday Short Course presented at the 2021 Microscopy and Microanalysis Meeting	Virtual Aug. 2021
DATA ANALYSIS IN MATERIALS SCIENCE Joshua A. Taillon, Eric Prestat, Duncan Johnstone, Magnus Nord, Katherine MacArthur 8-hour Sunday Short Course presented at the 2019 Microscopy and Microanalysis Meeting	Portland, OR Aug. 2019
ELECTRON MICROSCOPY IN THE AGE OF " <i>Big Data</i> " <u>Joshua A. Taillon</u> Presented at the 2019 Canadian Center for Electron Microscopy Summer School	Hamilton, ON, Canada June 2019
APPLICATIONS OF COMPRESSIVE SENSING FOR EDS ANALYSIS <u>Joshua A. Taillon</u> Presented at the 2018 FIB/SEM User Group Meeting AN INTRODUCTION TO HYPERSPY: THE MULTI-DIMENSIONAL DATA ANALYSIS TOOLBOX	Hamilton, ON, Canada May 2018
AN INTRODUCTION TO THE ERSET. THE MOET DIMENSIONAL DATA ANALISIS TOULDUA	

Joshua A. Taillon, Andrew A. Herzing A tutorial presented at the <i>Tools for Electron Microscopists</i> session at NIST	Gaithersburg, MD Apr. 2018
Computational Frontiers in Microscopy and Microanalysis Joshua A. Taillon	Gaithersburg, MD
Presented at A Celebration of Microscopy and Microanalysis	Sept. 2017
Compressed Sensing Applications in Microscopy and Microanalysis Joshua A. Taillon	Gaithersburg, MD
Presented at the NIST CS-Bio-Metrology Working Group Meeting ANALYTICAL AND MICROSTRUCTURAL MICROSCOPY APPROACHES FOR MATERIALS CHARACTERIZATION	May 2017
Joshua A. Taillon Presented at the U.S. Army Research Laboratory Methodology Seminar Series	Adelphi, MD Dec. 2016
ANALYTICAL ELECTRON MICROSCOPY OF INTERFACIAL STATES IN 4H-SIC/SIO ₂ MOS Devices Joshua A. Taillon, et al.	Boston, MA
Presented for Graduate Student Award consideration at the 2016 Fall Materials Research Society Meeting	Nov. 2016
Contributed (33)	
HyperSpy: Your Multidimensional Data Analysis Toolbox Joshua A. Taillon Presentation at SciPy 2024	Tacoma, WA July 2024
Updates from the MaRDA LIMS Working Group – A Community Discussion	
Joshua A. Taillon, Eric Stach, et al.	Seattle, WA
Town Hall forum presented at the 2024 Spring Materials Research Society Meeting NEXUSLIMS: LEVERAGING SHARED MICROSCOPY RESOURCES FOR DATA ANALYSIS WITH A CONFIGURABLE LABORATORY INFORMATION	Apr. 2024
Joshua A. Taillon Presented at the 2020 Microscopy and Microanalysis Meeting	Virtual Aug. 2020
Harvesting Microscopy Experimental Context with a Configurable Laboratory Information Management System	Aug. 2020
Joshua A. Taillon Presented at the 2019 Microscopy and Microanalysis Meeting	Portland, OR Aug. 2019
COMPRESSIVE SENSING RECONSTRUCTION FOR EDS ANALYSIS	
Joshua A. Taillon	Baltimore, MD
Presented at the 2018 Microscopy and Microanalysis Meeting An Open Evaluation of Hyperspectral Unmixing Strategies for EDS Analysis	Aug. 2018
Joshua A. Taillon	Baltimore, MD
Presented at the 2018 Microscopy and Microanalysis Meeting	Aug. 2018
TEM-EELS INVESTIGATION OF BORON AND PHOSPHORUS PASSIVATED 4H-SIC/SIO ₂ INTERFACE STRUCTURES Christopher Klingshirn, Joshua A. Taillon, et al. Presented at the 2017 March American Physical Society Meeting	New Orleans, LA Mar. 2017
QUANTIFIABLE COMPARATIVE EVALUATION OF FIB/SEM INSTRUMENTS	Mui. 2017
Valery Ray, Joshua A. Taillon, et al. Presented at the 2017 FIB/SEM User Group Meeting	Gaithersburg, MD Mar. 2017
Analytical Electron Microscopy of Interfacial States in 4H-SiC/SiO ₂ MOS Devices	
Joshua A. Taillon, et al. Presented at the 2016 Fall Materials Research Society Meeting	Boston, MA Nov. 2016
Advanced Analytical Microscopy at the Nanoscale: Applications in Wide Bandgap and Solid Oxide Fuel Cell Mate	
Joshua A. Taillon	College Park, MD
Oral defense of Ph.D. Thesis	July 2016
PERFORMANCE AND DEGRADATION OF SOFC CATHODES AT REDUCED TEMPERATURE Christopher Pellegrinelli, Joshua A. Taillon, <i>et al.</i>	San Diego, CA
Presented at the 2016 Spring Electrochemical Society Meeting	May 2016
Revealing Hidden Interfacial States in NO Passivated 4H-SiC/SiO ₂ Structures using TEM-EELS and XPS Joshua A. Taillon, et al. Presented at the 2016 March American Physical Society Meeting	Baltimore, MD Mar. 2016
ALLOYED NOBLE METAL NANOPARTICLES WITH TUNABLE OPTICAL PROPERTIES	Mul. 2010
Garrett C. Wessler, <u>Joshua A. Taillon</u> , <i>et al.</i> Presented at the 2016 March American Physical Society Meeting	Baltimore, MD Mar. 2016
Probing the Nature of Interfacial States in NO Passivated 4H-SiC/SiO ₂ Structures using TEM-EELS and XPS	
Joshua A. Taillon, et al. Presented at the 2015 Fall Materials Research Society Meeting	Boston, MA Dec. 2015
TOMOGRAPHIC AND HYPERSPECTRAL ANALYSIS OF POROUS THREE-DIMENSIONAL SOLID OXIDE FUEL CELL CATHODES AT MULTI Joshua A. Taillon, et al. Presented at the 2015 Fall Materials Research Society Meeting	PLE LENGTH SCALES Boston, MA Nov. 2015
Characterization of the Oxide-Semiconductor Interface in 4H-SIC/SIO, MOS Structures Using TEM and XPS	101.2010
Joshua A. Taillon, et al. Presented at the 10 th Annual SiC MOS Program Review	College Park, MD Aug. 2015

CHARACTERIZATION OF THE OXIDE-SEMICONDUCTOR INTERFACE IN 4H-SIC/SIO ₂ STRUCTURES USING TEM AND XPS Joshua A. Taillon, et al. Presented at the 2015 Microscopy and Microanalysis Meeting	Portland, OR Aug. 2015
THREE DIMENSIONAL MICROSTRUCTURAL CHARACTERIZATION OF CATHODE DEGRADATION IN SOFCS USING FIB/SEM AND TEM Joshua A. Taillon, et al. Presented at the 2015 Microscopy and Microanalysis Meeting	Portland, OR Aug. 2015
INVESTIGATING THE RELATIONSHIP BETWEEN OPERATING CONDITIONS AND SOFC CATHODE DEGRADATION Christopher Pellegrinelli, <u>Joshua A. Taillon</u> , <i>et al.</i> Presented at the 2015 SOFC-XIV Electrochemical Society Conference on Electrochemical Energy Conversion and Storage	Glasgow, Scotland July 2015
THREE DIMENSIONAL MICROSTRUCTURAL CHARACTERIZATION OF SOFCS USING FOCUSED ION BEAM AND SEM Joshua A. Taillon, et al. Presented at the 2015 FIB/SEM User Group Meeting	Laurel, MD Feb. 2015
CHARACTERIZATION OF THE OXIDE-SEMICONDUCTOR INTERFACE IN 4H-SIC/SIO ₂ STRUCTURES USING TEM AND XPS Joshua A. Taillon, et al. Presented at the 2014 Fall Materials Research Society Meeting	Boston, MA Dec. 2014
THREE DIMENSIONAL MICROSTRUCTURAL CHARACTERIZATION OF CATHODE DEGRADATION IN SOFCS USING FOCUSED ION BEAM AND Joshua A. Taillon, et al. Presented at the Americas Amira & Avizo User Group Meeting	SEM Boston, MA Oct. 2014
CHARACTERIZATION OF THE OXIDE-SEMICONDUCTOR INTERFACE IN 4H-SIC/SIO ₂ STRUCTURES USING TEM AND XPS Joshua A. Taillon, et al. Presented at the 9 th Annual SiC MOS Workshop	College Park, MD Aug. 2014
THREE DIMENSIONAL MICROSTRUCTURAL CHARACTERIZATION OF CATHODE DEGRADATION IN SOFCS USING FOCUSED ION BEAM AND Joshua A. Taillon, et al. Presented at the 2014 Spring Electrochemical Society Meeting	SEM Orlando, FL May 2014
CHARACTERIZATION OF THE OXIDE-SEMICONDUCTOR INTERFACE IN NO, P, AND N-PLASMA PASSIVATED 4H-SIC/SIO ₂ STRUCTURES US Joshua A. Taillon, et al. Presented at the 2013 Fall Materials Research Society Meeting	ING TEM AND XPS Boston, MA Dec. 2013
CHARACTERIZATION OF THE OXIDE-SEMICONDUCTOR INTERFACE IN NO, P, AND N-PLASMA PASSIVATED 4H-SIC/SIO ₂ STRUCTURES US Joshua A. Taillon, et al. Presented at the 8 th Annual SiC MOS Workshop	ING TEM College Park, MD Aug. 2013
CHARACTERIZATION OF THE OXIDE-SEMICONDUCTOR INTERFACE IN NO, P, AND N-PLASMA PASSIVATED 4H-SIC/SIO ₂ STRUCTURES US Joshua A. Taillon, et al. Presented at the 55 th Electronic Materials Conference	ING TEM South Bend, IN June 2013
Characterization of the oxide-semiconductor transition layer in NO, P, and N-plasma passivated 4H-SiC/SiO ₂ structur sion electron microscopy Joshua A. Taillon, <i>et al.</i>	RES USING TRANSMIS- Baltimore, MD
Presented at the 2013 March American Physical Society Meeting SYSTEMATIC CHARACTERIZATION OF THE SIC/SIO ₂ TRANSITION LAYER IN NO-ANNEALED MOSFETS Joshua A. Taillon, <i>et al.</i>	Mar. 2013 Boston, MA
Presented at the 2012 Fall Materials Research Society Meeting FABRICATION OF ZNO NANOWIRE ARRAYS FOR HYBRID PHOTOVOLTAIC APPLICATIONS Joshua A. Taillon, et al.	Nov. 2012 Boston, MA
Poster presented at the 2012 Fall Materials Research Society Meeting SYSTEMATIC CHARACTERIZATION OF THE SIC/SIO ₂ TRANSITION LAYER IN NO-ANNEALED MOSFETS Joshua A. Taillon, <i>et al.</i>	Nov. 2012 College Park, MD
Presented at the 7 th Annual SiC MOS Workshop FABRICATION OF ZNO NANOWIRE ARRAYS FOR HYBRID PHOTOVOLTAIC APPLICATIONS Lourdes Salamanca-Riba, Joshua A. Taillon, <i>et al.</i>	Aug. 2012 Boston, MA
Presented at the 2012 Fall American Physical Society March Meeting Ab Initio Discovery of Novel Crystal Structure Stability in Barium and Sodium-Calcium Compounds under Pressure u	Feb. 2012
Joshua A. Taillon, et al. Presented at the 2011 Cornell University Senior Research Thesis Symposium	Ithaca, NY May 2011